361 |
Dynamic element matching techniques for delta-sigma ADCs with large internal quantizers /Nordick, Brent C., January 2004 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2004. / Includes bibliographical references (p. 103-104).
|
362 |
Digital calibration of non-ideal pipelined analog-to-digital converters /Law, Waisiu. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (leaves 96-101).
|
363 |
Analog non-linear coding for improved performance in compressed sensingHu, Yichuan. January 2009 (has links)
Thesis (M.S.E.C.E.)--University of Delaware, 2009. / Principal faculty advisor: Javier Garcia-Frias, Dept. of Electrical & Computer Engineering. Includes bibliographical references.
|
364 |
Exploiting device nonlinearity in analog circuit designOdame, Kofi. January 2008 (has links)
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Hasler, Paul; Committee Member: Anderson, David; Committee Member: Butera, Robert; Committee Member: Minch, Bradley; Committee Member: Taylor, David. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
365 |
System oriented delta sigma analog-to-digital modulator design for ultra high precisoin data acquisition applicationsYang, Yuqing, Ph. D. 05 October 2012 (has links)
As high precision data acquisition systems continue to improve their performance and power efficiency to migrate into portable devices, increasing demands are placed on the performance and power efficiency of the analog-to-digital conversion modulator. On the other hand, analog-to-digital modulator performance is largely limited by several major noise sources including thermal noise, flicker noise, quantization noise leakage and internal analog and digital coupling noise. Large power consumption and die area are normally required to suppress the above noise energies, which are the major challenges to achieve power efficiency and cost targets for modern day high precision converter design. The main goal of this work is to study various approaches and then propose and validate the most suitable topology to achieve the desired performance and power efficiency specifications, up to 100 kHz bandwidth with 16-21 bits of resolution. This work will first study various analog-to-digital conversion architectures ranging from Nyquist converters such as flash, pipeline, to the delta sigma architecture. Advantages and limitations of each approach will be compared to develop the criteria for the optimal modulator architecture. Second, this work will study analog sub-circuit blocks such as opamp, comparator and reference voltage generator, to compare the advantages and limitations of various design approaches to develop the criteria for the optimal analog sub circuit design. Third, this work will study noise contributions from various sources such as thermal noise, flicker noise and coupling noise, to explore alternative power and die area efficient approaches to suppress the noise. Finally, a new topology will be proposed to meet all above criteria and adopt the new noise suppression concepts, and will be demonstrated to be the optimal approach. The main difference between this work from previous ones is that current work places emphasis on the integration of the modulator architecture design and analog sub-circuit block research efforts. A high performance stereo analog-to-digital modulator is designed based on the new approach and manufactured in silicon. The chip is measured in the lab and the measurement results reported in the dissertation. / text
|
366 |
Methods for high volume mixed signal circuit testing in the presence of resource constraintsDasnurkar, Sachin 05 April 2013 (has links)
Analog and mixed signal device testing is resource intensive due to the spectral and temporal speci cations of the input/output interface signals. These devices and circuits are commonly validated by parametric speci fication tests to ensure compliance with the required performance criteria. Analog signal complexity increases resource requirements for the Automatic Test Equipment (ATE) systems used for commercial testing, making mixed signal testing resource ine cient as compared to digital structural testing. This dissertation proposes and implements a test ecosystem to address these constraints where Built In Self Test (BIST) modules are designed for internal stimulus generation. Data learning and processing algorithms are developed for output response shaping. This modi ed output response is then compared against the established performance matrices to maintain test quality with low cost receiver hardware. BIST modules reduce dependence on ATE resources for stimulus and output observation while improving capability to test multiple devices in parallel. Data analysis algorithms are used to predict specification parameters based on learning methods applied to measurable device parameters. Active hardware resources can be used in conjunction with post processing resources to implement complex speci cation based tests within the hardware limitations. This dissertation reviews the results obtained with the consolidated approach of using BIST, output response analysis and active hardware resources to reduce test cost while maintaining test quality. / text
|
367 |
Semi-formal verifcation of analog mixed signal systems using multi-domain modeling languagesRamirez, Ricardo, active 2013 18 December 2013 (has links)
The verification of analog designs has been a challenging task for a few years now. Several approaches have been taken to tackle the main problem related to the complexity that such task presents to design and verification teams. The methodology presented in this document is based on the experiences and research work carried out by the Concordia University's Hardware Verification and the U. of Texas' IC systems design groups.
The representation of complex systems where different interactions either mechanical or electrical take place requires an intricate set of mathematical descriptions which greatly vary according to the system under test. As a simple and very relevant example one can look at the integration of RF-MEMS as active elements in System-On-Chip architectures. In order to tackle such heterogeneous interaction for a consistent model, the use of stochastic hybrid models is described and implemented for very simple examples using high level modeling tools for a succinct
and precise description. / text
|
368 |
Efficient verification/testing of system-on-chip through fault grading and analog behavioral modelingJeong, Jae Hoon 10 February 2014 (has links)
This dissertation presents several cost-effective production test solutions using fault grading and mixed-signal design verification cases enabled by analog behavioral modeling. Although the latest System-on-Chip (SOC) is getting denser, faster, and more complex, the manufacturing technology is dominated by subtle defects that are introduced by small-scale technology. Thus, SOC requires more mature testing strategies. By performing various types of testing, better quality SoC can be manufactured, but test resources are too limited to accommodate all those tests. To create the most efficient production test flow, any redundant or ineffective tests need to be removed or minimized.
Chapter 3 proposes new method of test data volume reduction by combining the nonlinear property of feedback shift register (FSR) and dictionary coding. Instead of using the nonlinear FSR for actual hardware implementation, the expanded test set by nonlinear expansion is used as the one-column test sets and provides big reduction ratio for the test data volume. The experimental results show the combined method reduced the total test data volume and increased the fault coverage. Due to the increased number of test patterns, total test time is increased.
Chapter 4 addresses a whole process of functional fault grading. Fault grading has always been a ”desire-to-have” flow because it can bring up significant value for cost saving and yield analysis. However, it is very hard to perform the fault grading on the complex large scale SOC. A commercial tool called Z01X is used as a fault grading platform, and whole fault grading process is coordinated and each detailed execution is performed. Simulation- based functional fault grading identifies the quality of the given functional tests against the static faults and transition delay faults. With the structural tests and functional tests, functional fault grading can indicate the way to achieve the same test coverage by spending minimal test time. Compared to the consumed time and resource for fault grading, the contribution to the test time saving might not be acceptable as very promising, but the fault grading data can be reused for yield analysis and test flow optimization. For the final production testing, confident decisions on the functional test selection can be made based on the fault grading results.
Chapter 5 addresses the challenges of Package-on-Package (POP) testing. Because POP devices have pins on both the top and the bottom of the package, the increased test pins require more test channels to detect packaging defects. Boundary scan chain testing is used to detect those continuity defects by relying on leakage current from the power supply. This proposed test scheme does not require direct test channels on the top pins. Based on the counting algorithm, minimal numbers of test cycles are generated, and the test achieved full test coverage for any combinations of pin-to-pin shortage defects on the top pins of the POP package. The experimental results show about 10 times increased leakage current from the shorted defect. Also, it can be expanded to multi-site testing with less test channels for high-volume production.
Fault grading is applied within different structural test categories in Chapter 6. Stuck-at faults can be considered as TDFs having infinite delay. Hence, the TDF Automatic Test Pattern Generation (ATPG) tests can detect both TDFs and stuck-at faults. By removing the stuck-at faults being detected by the given TDF ATPG tests, the tests that target stuck-at faults can be reduced, and the reduced stuck-at fault set results in fewer stuck-at ATPG patterns. The structural test time is reduced while keeping the same test coverage. This TDF grading is performed with the same ATPG tool used to generate the stuck-at and TDF ATPG tests.
To expedite the mixed-signal design verification of complex SoC, analog behavioral modeling methods and strategies are addressed in Chapter 7 and case studies for detailed verification with actual mixed-signal design are ad- dressed in Chapter 8. Analog modeling effort can enhance verification quality for a mixed-signal design with less turnaround time, and it enables compatible integration of the mixed-signal design cores into the SoC. The modeling process may reveal any potential design errors or incorrect testbench setup, and it results in minimizing unnecessary debugging time for quality devices.
Two mixed-signal design cases were verified by me using the analog models. A fully hierarchical digital-to-analog converter (DAC) model is implemented and silicon mismatches caused by process variation are modeled and inserted into the DAC model, and the calibration algorithm for the DAC is successfully verified by model-based simulation at the full DAC-level. When the mismatch amount is increased and exceeded the calibration capability of the DAC, the simulation results show the increased calibration error with some outliers. This verification method can identify the saturation range of the DAC and predict the yield of the devices from process variation.
A phase-locked loop (PLL) design cases were also verified by me using the analog model. Both open-loop PLL model and closed-loop PLL model cases are presented. Quick bring-up of open-loop PLL model provides low simulation overhead for widely-used PLLs in the SOC and enables early starting of design verification for the upper-level design using the PLL generated clocks. Accurate closed-loop PLL model is implemented for DCO-based PLL design, and the mixed-simulation with analog models and schematic designs enables flexible analog verification. Only focused analog design block is set to the schematic design and the rest of the analog design is replaced by the analog model. Then, this scaled-down SPICE simulation is performed about 10 times to 100 times faster than full-scale SPICE simulation. The analog model of the focused block is compared with the scaled-down SPICE simulation result and the quality of the model is iteratively enhanced. Hence, the analog model enables both compatible integration and flexible analog design verification.
This dissertation contributes to reduce test time and to enhance test quality, and helps to set up efficient production testing flows. Depending on the size and performance of CUT, proper testing schemes can maximize the efficiency of production testing. The topics covered in this dissertation can be used in optimizing the test flow and selecting the final production tests to achieve maximum test capability. In addition, the strategies and benefits of analog behavioral modeling techniques that I implemented are presented, and actual verification cases shows the effectiveness of analog modeling for better quality SoC products. / text
|
369 |
Analog-to-digital converter circuit and system design to improve with CMOS scalingMortazavi, Yousof 08 September 2015 (has links)
There is a need to rethink the design of analog/mixed-signal circuits to be viable in state-of-the-art nanometer-scale CMOS processes due to the hostile environment they create for analog circuits. Reduced supply voltages and smaller capacitances are beneficial to circuit speed and digital circuit power efficiency; however, these changes along with smaller dimensions and close coupling of fast-switching digital circuits have made high-accuracy voltage domain analog processing increasingly difficult. In this work, techniques to improve analog-to-digital converters (ADC) for nanometer-scale processes are explored. First, I propose a mostly-digital time-based oversampling delta-sigma (∆Σ) ADC architecture. This system uses time, rather than voltage, as the analog variable for its quantizer, where the noise shaping process is realized by modulating the width of a variable-width digital "pulse." The merits of this architecture render it not only viable to scaling, but also enable improved circuit performance with ever-increasing time resolution of scaled CMOS processes. This is in contrast to traditional voltage-based analog circuit design, whose performance generally decreases with scaling due to increasingly higher voltage uncertainty due to supply voltage reduction and short-channel effects. In conjunction with Dr. Woo Young Jung while he was a Ph.D. student at The University of Texas at Austin, two prototype implementations of the proposed architecture were designed and fabricated in TSMC 180 nm CMOS and IBM 45 nm Silicon-On-Insulator (SOI) processes. The prototype ADCs demonstrate that the architecture can achieve bandwidths of 5-20 MHz and ∼50 dB SNR with very small area. The first generation ADC core occupies an area of only 0.0275 mm² , while the second generation ADC core occupies 0.0192 mm² . The two prototypes can be categorized as some of the smallestarea modulators in the literature. Second, I analyze the measured results of the prototype ADC chips, and determine the source for the harmonic distortion. I then demonstrate a digital calibration algorithm that sufficiently mitigates the distortion. This calibration approach falls in the general philosophy of digitally-assisted analog systems. In this philosophy, digital calibration and post-correction are favored over traditional analog solutions, in which there is a high cost to the analog solution either in complexity, power, or area. / text
|
370 |
Parallel multipliers for modular arithmeticSanu, Moboluwaji Olusegun 28 August 2008 (has links)
Not available / text
|
Page generated in 0.0322 seconds