• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 714
  • 176
  • 133
  • 90
  • 33
  • 22
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 15
  • 15
  • 8
  • Tagged with
  • 1417
  • 290
  • 270
  • 170
  • 128
  • 111
  • 108
  • 92
  • 80
  • 79
  • 78
  • 74
  • 73
  • 72
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Field monitoring and modeling of pavement response and service life consumption due to overweight truck traffic

Oh, Jeong-Ho 15 November 2004 (has links)
A number of pavement structures experience deterioration due to high traffic volume and growing weights. Recently, the Texas Legislatures passed bills allowing trucks of gross vehicle weight (GVW) up to 556 kN routinely to use a route in south Texas along the Mexican border. Thus, there is a need to model pavement responses due to various types of overweight truck traffic (OTT) by taking into account axle loads, configuration, and pavement layer material characterizations in order to provide a guideline to assess the existing pavement performance and expected service life. It is for this purpose that the nonlinear cross-anisotropic pavement analysis finite element program (NCPA) has been developed. Stress dependent and directionally different resilient modulus and Poisson's ratios are incorporated into the finite element formulation to model the pavement response. As a tool to assess the performance of the pavement, the procedure to calculate the overall rutting and the cracked area was included in the formulation Intensive nondestructive testing has been performed to identify the existing pavement test section geometry and layer properties. In addition, a fiber optic based Weigh-in Motion (WIM) sensor was developed and tested. It is expected to be a promising device to monitor traffic by showing a reliable response. Sampled materials from the test section were tested to characterize their stress-dependent, cross-anisotropic and permanent deformation properties. Constitutive models are verified by comparing the predicted displacements with field displacements measured with the Multi-Depth Deflectometer (MDD). The result was that the least error between predicted and measured displacements is generated by the nonlinear cross-anisotropic model. In addition, the cross-anisotropic characteristic of the asphalt concrete material is introduced and evaluated based on the relationship between the backcalculated static and dynamic modulus. This addition improves the accuracy of the assessment of pavement performance with respect to both rutting and fatigue cracking. Charts to evaluate the service life of the existing pavement subjected to OTTs are established in terms of the unit service life consumed due to the rutting and fatigue cracking with the various observed combinations of pavement geometry, traffic load, and material properties.
322

Allosteric regulation of glycerol kinase: fluorescence and kinetics studies

Yu, Peng 17 February 2005 (has links)
Glycerol kinase (GK) from Escherichia coli is allosterically controlled by fructose 1,6-bisphosphate (FBP) and the glucose-specific phosphocarrier protein IIAGlc of the phosphotransferase system. These controls allow glucose to regulate glycerol utilization. Fluorescence spectroscopic and enzyme kinetic methods are applied to investigate these allosteric controls in this study. The linkage between FBP binding and GK tetramer assembly is solved by observation of homo-fluorescence energy transfer of the fluorophore Oregon Green (OG) attached specifically to an engineered surface cysteine in GK. FBP binds to tetramer GK with an affinity 4000-fold higher than to dimeric GK. A region named the coupling locus that plays essential roles in the allosteric signal transmission from the IIAGlc binding site to the active site was identified in GK. The relationship between the coupling locus sequence in Escherichia coli or Haemophilus influenzae GK variants and the local flexibility of the IIAGlc binding site is established by fluorescence anisotropy determinations of the OG attached to the engineered surface cysteine in each variant. The local flexibility of the IIAGlc binding site is influenced by the coupling locus sequence, and in turn affects the binding affinity for IIAGlc. Furthermore, the local dynamics of each residue in the IIAGlc binding site of GK is studied systematically by the fluorescence anisotropy measurements of OG individually attached to each position of the IIAGlc binding site. The fluorescence steady-state anisotropy measurement provides a valid estimation of the local flexibility and correlates well with the crystallographic B-factors. Steady-state kinetics of FBP inhibition shows that the data are best described by a model in which the partial inhibition and FBP binding stoichiometry are taken into account. Kinetic viscosity effects show that the product-release step is not the purely rate-limiting step in the GK-catalyzed reaction. Viscosity effects on FBP inhibition are also discussed.
323

Multiscale approach for modeling hot mix asphalt

Dessouky, Samer Hassan 29 August 2005 (has links)
Hot mix asphalt (HMA) is a granular composite material stabilized by the presence of asphalt binder. The behavior of HMA is highly influenced by the microstructure distribution in terms of the different particle sizes present in the mix, the directional distribution of particles, the distribution of voids, and the nucleation and propagation of cracks. Conventional continuum modeling of HMA lacks the ability to explicitly account for the effect of microstructure distribution features. This study presents the development of elastic and visco-plastic models that account for important aspects of the microstructure distribution in modeling the macroscopic behavior of HMA. In the first part of this study, an approach is developed to introduce a length scale to the elasticity constitutive relationship in order to capture the influence of particle sizes on HMA response. The model is implemented in finite element (FE) analysis and used to analyze the microstructure response and predict the macroscopic properties of HMA. Each point in the microstructure is assigned effective local properties which are calculated using an analytical micromechanical model that captures the influence of percent of particles on the microscopic response of HMA. The moving window technique and autocorrelation function are used to determine the microstructure characteristic length scales that are usedin strain gradient elasticity. A number of asphalt mixes with different aggregate types and size distributions are analyzed in this paper. In the second part of this study, an elasto-visco-plastic continuum model is developed to predict HMA response and performance. The model incorporates a Drucker- Prager yield surface that is modified to capture the influence of stress path direction on the material response. Parameters that reflect the directional distribution of aggregates and damage density in the microstructure are included in the model. The elasto-visco-plastic model is converted into a numerical formulation and is implemented in FE analysis using a user-defined material subroutine (UMAT). A fully implicit algorithm in time-step control is used to enhance the efficiency of the FE analysis. The FE model used in this study simulates experimental data and pavement section.
324

Determination of aggregate physical properties and its effects on cross-anisotropic behavior of unbound aggregate materials

Kim, Sung-Hee 01 November 2005 (has links)
Work done by several researchers reveals that unbound aggregate materials show nonlinear cross-anisotropic behavior. The incorporation of cross-anisotropic properties significantly improves the predictions of stress distribution by reducing tensile stresses computed within granular layers. Existing pavement analysis and design approaches, however, generally assume the pavement structure to be linear isotropic layered system. This assumption is motivated by the difficulties in determining cross-anisotropic resilient material properties from laboratory experiments and lack of pavement anisotropic analysis programs. Recently, the International Center for Aggregates Research (ICAR) developed a methodology to characterize unbound aggregate layers by considering stress-sensitivity and nonlinear cross-anisotropy. The ICAR model requires nine coefficients to account for stress-sensitivity and anisotropy of vertical, horizontal, and shear moduli. Unfortunately, ICAR testing protocol is time-consuming and expensive to perform and certainly do not lend themselves to routine testing. Since it is important to be able to consider the stress-sensitive and anisotropic nature of unbound granular materials, a simple procedure was proposed by accounting for the effects of aggregate gradation and shape properties in predicting the cross-anisotropic modular ratio of unbound granular materials. Variable confining pressure type repeated load triaxial tests were performed on six aggregate sources with three different gradations and three different moisture contents. The experimental results were analyzed within the framework of nonlinear cross-anisotropic elastic model in order to determine the model coefficients. Image analysis techniques were utilized to measure aggregate shape properties. The gradation and shape properties were fitted using a cumulative distribution function and nonlinear regression analysis, which is capable of capturing the complete distribution of these properties. The experimental and analytical results indicate that the vertical resilient modulus is greater than the horizontal resilient modulus and that aggregate physical properties significantly affect the anisotropic resilient behavior. Based on finite element analysis, the anisotropic resilient behavior has substantial effect on the critical pavement responses. Thus, it is extremely valuable to approximate the degree of cross-anisotropy in unbound aggregates and to use it as input in the pavement analysis programs to adequately model unbound aggregate bases for pavement design and analysis.
325

Studies of the relationship of protein structure to regulation and catalysis in tyrosine hydroxylase

Sura, Giri Raju 17 September 2007 (has links)
Tyrosine hydroxylase (TyrH) catalyzes the rate-limiting step in the synthesis of the catecholamine neurotransmitters dopamine, epinephrine, and norepinephrine. Phosphorylation of Ser40 of rat TyrH activates the enzyme by decreasing the affinity for catecholamines. In humans, there are four different TyrH isoforms with varying lengths for the regulatory domain. DOPA and dopamine binding studies were performed on the phosphorylated and unphosphorylated human isoforms. The Kd for DOPA was increased two times upon phosphorylation of hTyrH1, but no change was seen for hTyrH4; the Kd value decreased with the increase in the size of regulatory domain. The small effect on the Kd value for DOPA upon phosphorylation of hTyrH suggests that DOPA does not regulate the activity of hTyrH. Dopamine binds very tightly and upon phosphorylation the affinity for dopamine is decreased. This Kd value decreases with the increase in the length of the regulatory domain. The crystal structures of substrate complexes of the homologous enzyme phenylalanine hydroxylase (PheH) show a large movement of a surface loop (residues 131-155) upon amino acid binding. The corresponding loop residues (175-200) in TyrH play an important role in DOPA formation. This conformational change in TyrH loop was studied with fluorescence anisotropy. Three tryptophan residues in the TyrH, at positions 166, 233, and 372, were mutated to phenylalanine, and Phe184 was mutated to tryptophan. An increase in anisotropy was observed in the presence of phenylalanine and 6-methyl-5-deazatetrahydropterin (6M5DPH4), but the magnitude of the change of anisotropy with 6M5DPH4 was greater than that with phenylalanine. Further characterization of the sole tryptophan in the loop showed a decrease in the amplitude of the local motion only in the presence of 6M5DPH4 alone. The conformational change in wild type TyrH was examined by H/D exchange LC/MS spectroscopy in the presence of the natural ligands. Time-course dependent deuterium incorporation into the loop in the presence of ligands indicated that the pterin alone can induce the conformational change in the loop irrespective of whether iron is reduced or oxidized. From these results, one can conclude that the loop undergoes a conformational change upon pterin binding, making the active site better for amino acid binding.
326

Transverse anisotropy in softwoods : Modelling and experiments

Modén, Carl S. January 2006 (has links)
<p>Transverse anisotropy is an important phenomenon of practical and scientific interest. Although the presence of ray tissue explains the high radial modulus in many hardwoods, experimental data in the literature shows that this is not the case for pine. It is possible that anisotropy in softwoods may be explained by the cellular structure and associated deformation mechanisms.</p><p>An experimental approach was developed by which local radial modulus in spruce was determined at sub-annual ring scale. Digital speckle photography (DSP) was used, and the density distribution was carefully characterized using x-ray densitometry and the SilviScan apparatus. A unique set of data was generated for radial modulus versus a wide range of densities. This was possible since earlywood density shows large density variations in spruce. Qualitative comparison was made between data and predictions from stretching and bending honeycomb models. The hypothesis for presence of cell wall stretching was supported by data.</p><p>A model for wood was therefore developed where both cell wall bending and stretching are included. The purpose was a model for predictions of softwood moduli over a wide range of densities. The relative importance of the deformation mechanisms was investigated in a parametric study. A two-phase model was developed and radial and tangential moduli were predicted. Comparison with experimental data showed good agreement considering the nature of the model (density is the only input parameter). Agreement is much better than for a regular honeycomb model. According to the model, cell wall bending dominates at both low and high densities during tangential loading. In radial loading, cell wall stretching dominates at higher densities.</p>
327

Fission of aligned nuclei by low energy neutrons

Kuiken, Renze, January 1971 (has links)
Thesis (Ph. D.)--Leiden Rijksuniversiteit, 1971. / Vita. Summaries in English and Dutch. Includes bibliographical references.
328

Investigation of measurement artifacts introduced by horizontal scanning surface profiling instruments

Bergstrom, Torbjorn S. January 2002 (has links)
Thesis (M.S.)--Worcester Polytechnic Institute. / Keywords: Aniosotropy; scanning instruments; scanning; surface metrology; surface; fractal. Includes bibliographical references (p. 52).
329

Fracture characterization of a carbonate reservoir in the Arabian Peninsula

Alhussain, Mohammed Abdullah 07 November 2013 (has links)
Estimation of reservoir fracture parameters, fracture orientation and density, from seismic data is often difficult because of one important question: Is observed anisotropy caused by the reservoir interval or by the effect of the lithologic unit or multiple units above the reservoir? Often hydrocarbon reservoirs represent a small portion of the seismic section, and reservoir anisotropic parameter inversion can be easily obscured by the presence of an anisotropic overburden. In this study, I show examples where we can clearly observe imprints of overburden anisotropic layers on the seismic response of the target zone. Then I present a simple method to remove the effect of anisotropic overburden to recover reservoir fracture parameters. It involves analyzing amplitude variation with offset and azimuth (AVOA) for the top of reservoir reflector and for a reflector below the reservoir. Seismic CMP gathers are transformed to delay-time vs. slowness (tau-p) domain. We then calculate the ratio of the amplitudes of reflections at the reservoir top and from the reflector beneath the reservoir. The ratios of these amplitudes are then used to isolate the effect of the reservoir interval and remove the transmission effect of the overburden. The methodology is tested on two sets of models - one containing a fractured reservoir with isotropic overburden and the other containing a fractured reservoir with anisotropic overburden. Conventional analysis in the x-t domain indicates that the anisotropic overburden has completely obscured the anisotropic signature of the reservoir zone. When the new methodology is applied, the overburden effect is significantly reduced. The methodology is also applied to an actual PP surface reflection (Rpp) 3D dataset over a reservoir in the Arabian Peninsula. Ellipse-fitting technique was applied to invert for two Fracture parameters: (1) Fracture density and (2) fracture direction. Fracture density inversion results indicate increased fracturing in the anticline structure hinge zone. Fracture orientation inversion results agree with Formation MicroImaging (FMI) borehole logs showing a WNW-ESE trend. This newly developed amplitude ratio method is suitable for quantitative estimation of fracture parameters including normal and tangential “weaknesses” (ΔN and ΔT respectively). Initially, inversion of conventional AVOA for ΔN and ΔT parameters indicates that the ΔN parameter is reliably estimated given an accurate background isotropic parameter estimation derived from borehole logging data. While ΔN parameter inversion is successful, inversion for ΔT parameter from Rpp information is not, presumably due to the dependence of ΔT estimation on many medium parameters for accurate prediction. The ΔN parameter is then successfully recovered when applied to the amplitude ratio values derived from synthetic data. It is important to recognize that ΔN parameter is directly proportional to fracture density and high ΔN values can be attributed to high crack density values. The ΔN parameter inversion is also applied to the amplitude ratios derived from real seismic data. This inversion requires fracture azimuth data input that is obtained from the fracture direction inversion using ellipse-fitting technique. The background Vp/Vs ratio. / text
330

Multiazimuth velocity analysis using velocity-independent seismic imaging

Burnett, William Andrew, 1983- 02 March 2015 (has links)
Multiazimuth seismic data contains information about how the Earth’s seismic response changes with azimuthal direction. Directional-dependence of the seismic response can be caused by anisotropy or heterogeneity, associated with subsurface features such as fractures, stresses, or structure. Characterizing azimuthal variations is done through velocity analysis, which provides a link between an acquired data set and its image, as well as between the image and subsurface geology. At the stage which conventional velocity analysis is applied, it is difficult to distinguish the geologic cause of observed azimuthal velocity variations. The inability to distinguish the similar effects of anisotropy and heterogeneity leads to positioning errors in the final image and velocity estimates. Regardless of the cause, azimuthally variable velocities require at least three parameters to characterize, as opposed to the conventional single-parameter isotropic velocity. The semblance scan is the conventional tool for seismic velocity analysis, but it was designed for the isotropic case. For multiple parameters, the semblance scan becomes computationally impractical. In order to help address the xiissues of geologic ambiguity and computational efficiency, I develop three methods for multiazimuth seismic velocity analysis based on “velocity-independent” imaging techniques. I call this approach, velocity analysis by velocity-independent imaging, where I reverse the conventional order of velocity estimation followed by image estimation. All three methods measure time-domain effective-velocity parameters. The first method, 3D azimuthally anisotropic velocity-independent NMO, replaces the explicit measurement of velocity with local slope detection. The second method, time-warping, uses local slope information to predict traveltime surfaces without any moveout assumption beforehand, and then fit them with a multiparameter velocity model. The third method, azimuthal velocity continuation, uses diffraction image focusing as a velocity analysis criterion, thereby performing imaging and velocity analysis simultaneously. The first two methods are superior to the semblance scan in terms of computational efficiency and their ability to handle multi-parameter models. The third method is similar to a single multi-parameter semblance scan in computational cost, but it helps handle the ambiguity between structural heterogeneity and anisotropy, which leads to better positioned images and velocity estimates. / text

Page generated in 0.0737 seconds