• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 11
  • 11
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiscale approach for modeling hot mix asphalt

Dessouky, Samer Hassan 29 August 2005 (has links)
Hot mix asphalt (HMA) is a granular composite material stabilized by the presence of asphalt binder. The behavior of HMA is highly influenced by the microstructure distribution in terms of the different particle sizes present in the mix, the directional distribution of particles, the distribution of voids, and the nucleation and propagation of cracks. Conventional continuum modeling of HMA lacks the ability to explicitly account for the effect of microstructure distribution features. This study presents the development of elastic and visco-plastic models that account for important aspects of the microstructure distribution in modeling the macroscopic behavior of HMA. In the first part of this study, an approach is developed to introduce a length scale to the elasticity constitutive relationship in order to capture the influence of particle sizes on HMA response. The model is implemented in finite element (FE) analysis and used to analyze the microstructure response and predict the macroscopic properties of HMA. Each point in the microstructure is assigned effective local properties which are calculated using an analytical micromechanical model that captures the influence of percent of particles on the microscopic response of HMA. The moving window technique and autocorrelation function are used to determine the microstructure characteristic length scales that are usedin strain gradient elasticity. A number of asphalt mixes with different aggregate types and size distributions are analyzed in this paper. In the second part of this study, an elasto-visco-plastic continuum model is developed to predict HMA response and performance. The model incorporates a Drucker- Prager yield surface that is modified to capture the influence of stress path direction on the material response. Parameters that reflect the directional distribution of aggregates and damage density in the microstructure are included in the model. The elasto-visco-plastic model is converted into a numerical formulation and is implemented in FE analysis using a user-defined material subroutine (UMAT). A fully implicit algorithm in time-step control is used to enhance the efficiency of the FE analysis. The FE model used in this study simulates experimental data and pavement section.
2

A New Visco-Plastic Device for Seismic Protection of Structures

Ibrahim, Yasser El-Husseini 18 February 2005 (has links)
A new visco-plastic damper for seismic protection is introduced. This device combines and enhances many of the proven characteristics of both displacement-dependent and velocity-dependent devices. The device consists of a block of a high-damping viscoelastic material sandwiched between two steel shapes (plates or channels) bent in a certain configuration to amplify the deformations in the device in order to obtain large tensile and compressive strains in the viscoelastic material. Under low levels of vibrations, the device dissipates energy through amplified strains in the viscoelastic material only; however, under moderate to strong levels of vibrations, a new source of energy dissipation is added through the yielding of the steel elements. The inelastic behavior of the steel elements is controlled by the rigidity of the viscoelastic material. In addition to the energy dissipation, the device provides stiffness through the steel elements as well as the viscoelastic material. Moreover, one of the main advantages of the device is that its behavior is fully controlled through different parameters. First, a nonlinear time history analysis was conducted on structures with a preliminary model of the device using SAP2000 program to check the effectiveness of the device on the response of different structures under ground excitations. The device resulted in better improvement in the structural response compared to the existing viscoelastic dampers. A three-dimensional finite element model was developed for the device using the finite element package, ABAQUS. The hyperelastic and viscoelastic behavior of the block of the viscoelastic material were considered. The inelastic behavior of the steel elements was considered as well using the Von Mises yielding criterion. The device was analyzed under different dynamic loadings with different frequencies. Three simplified models were developed using SAP2000 program in order to facilitate the modeling of the device for structural engineers. These models were compared to the detailed finite element model to check their accuracy. The best model was used in the analysis of a multi-story steel frame with the visco-plastic devices under different ground excitations. Two different arrangements of the device were considered. The devices caused significant reduction in the story displacements, base shear and bending moment at column bases. / Ph. D.
3

One Dimensional Computer Analysis of Simultaneous Consolidation and Creep of Clay

Perrone, Vincent J. 22 September 1998 (has links)
This dissertation describes the development and verification of a general purpose computer program, CONSOL97, for analysis of one dimensional consolidation of multi-layered soil profiles. The program uses an elasto-visco-plastic model that can simulate both consolidation and creep in a single consistent analysis. The finite element program uses standard oedometer test data to model stress-strain-time relationships, and the effect of strain rate on preconsolidation stress observed in the laboratory and in the field. Validation of the computer program by simulating standard oedometer tests is described and the applicability of the program in predicting field behavior is examined. The oedometer test simulations indicate good agreement with stress-strain and strain-log time test results during loading. Unloading behavior produces excessive rebound. Well-instrumented field tests at Väsby, Sweden, Skå-Edeby, Sweden and Berthierville, Canada indicate that elasto-visco-plastic CONSOL97 analyses produce better predictions of field behavior than conventional elasto-plastic models. CONSOL97 results were in good agreement for the Väsby and Berthierville test fills but underestimated displacements and pore pressures near the center of the normally consolidated clay layer beneath the Skå-Edeby test fill. / Ph. D.
4

Simulation of Mechanical Behaviour of Pure Titanium

Deng, Shu 11 1900 (has links)
Titanium is a widely applied material in industries and characterized by highly anisotropic mechanical behaviour. To study the special property of titanium, many kinds of mechanical loading tests have been conducted. Moreover, researchers attempted to reproduce these experiments with numerical methods. This paper will present an overview about the deformation mechanisms and related representative studies of titanium. Among the numerical methods, Taylor type and self-consistent crystal plasticity models are two of the most common ones seen in literature. Simulation of some mechanical loading tests using visco-plastic self-consistent model was carried out and compared with the results given by Taylor type model. It has been found that self-consistent model prevails in the reproduction of stress-strain response and texture evolution. During the calculation of self-consistent model, there are totally 4 kinds of self-consistent schemes available for linearization process. The author investigated 4 groups of simulation works using different self-consistent schemes. But no evident distinction has been observed. The application of visco-plastic self-consistent model in commercial purity titanium is studied at the end. The simulation results successfully captured the general features of 9 mechanical loading tests. / Thesis / Master of Applied Science (MASc)
5

Mechanical Flow Response and Anisotropy of Ultra-Fine Grained Magnesium and Zinc Alloys

Al Maharbi, Majid H. 2009 December 1900 (has links)
Hexagonal closed packed (hcp) materials, in contrast to cubic materials, possess several processing challenges due to their anisotropic structural response, the wide variety of deformation textures they exhibit, and limited ductility at room temperature. The aim of this work is to investigate, both experimentally and theoretically, the effect os severe plastic deformation, ultrafine grain sizes, crystallographic textures and number of phases on the flow stress anisotropy and tension compression asymmetry, and the mechanisms responsible for these phenomena in two hcp materials: AZ31B Mg alloy consisting of one phase and Zn-8wt.% Al that has an hcp matrix with a secondary facecentered cubic (fcc) phase. Mg and its alloys have high specific strength that can potentially meet the high demand for light weight structural materials and low fuelconsumption in transportation. Zn-Al alloys, on the other hand, can be potential substitutes for several ferrous and non-ferrous materials because of their good mechanical and tribological properties. Both alloys have been successfully processed using equal channel angular extrusion (ECAE) following different processing routes in order to produce samples with a wide variety of microstructures and crystallographic textures for revealing the relationship between microstructural parameters, crystallographic texture and resulting flow stress anisotropy at room temperature. For AZ31B Mg alloy, the texture evolution during ECAE following conventional and hybrid ECAE routes was successfully predicted using visco-plastic self-consistent (VPSC) crystal plasticity model. The flow stress anisotropy and tension-compression (T/C) asymmetry of the as received and processed samples at room temperature were measured and predicted using the same VPSC model coupled with a dislocation-based hardening scheme. The governing mechanisms behind these phenomena are revealed as functions of grains size and crystallographic texture. It was found that the variation in flow stress anisotropy and T/C asymmetry among samples can be explained based on the texture that is generated after each processing path. Therefore, it is possible to control the flow anisotropy and T/C asymmetry in this alloy and similar Mg alloys by controlling the processing route and number of passes, and the selection of processing conditions can be optimized using VPSC simulations. In Zn-8wt.% Al alloy, the hard phase size, morphology, and distribution were found to control the anisotropy in the flow strength and elongation to failure of the ECAE processed samples.
6

Deformation behaviour and twinning mechanisms of commercially pure titanium alloys

Battaini, Michael January 2008 (has links)
The deformation behaviour and twinning mechanisms of commercially pure titanium alloys were investigated using complementary diffraction techniques and crystal plasticity modelling. The main motivation for conducting this investigation was to improve understanding of the deformation of titanium to help achieve the long term aim of reducing manufacturing and design costs. The deformation behaviour was characterised with tension, compression and channel die compression tests for three important variables: orientation; temperature from 25 C to 600 C; and composition for two contrasting alloys, CP-G1 and CP-G4. The experimental data used to characterise the behaviour and determine the mechanisms causing it were: textures determined by X-ray diffraction; twin area fractions for individual modes determined using electron back-scatter diffraction; and lattice strains measured by neutron diffraction. A strong effect of the orientation–stress state conditions on the flow curves (flow stress anisotropy) was found. The propensity for prism hai slip was the dominant cause of the behaviour – samples that were more favourably oriented for prism hai slip had lower flow stresses. Twinning was the most significant secondary deformation mode in the CP-G1 alloy but only had a minor effect on flow stress anisotropy in most cases. In the CP-G4 alloy twinning generally did not play a significant role indicating that hc + ai slip modes were significant in this alloy. Differences in the flow stress anisotropy between the two alloys were found to occur largely in the elasto-plastic transition and initial period of hardening. Modelling results indicated that larger relative resolved shear stress values for secondary deformation modes in the higher purity alloy increased the initial anisotropy. Decreasing flow stresses with increasing temperature were largely caused by a decrease in the critical resolved shear stress (CRSS) values for slip, but also by a decrease in the Hall-Petch parameter for slip. The propagation of twinning was found to be orientation dependent through a Schmid law in a similar way to slip – it was activated at a CRSS and hardened so that an increasing resolved shear stress was required for it to continue operating. The CRSS values determined for the individual twin modes were – 65MPa, 180MPa, 83MPa for {1012}, {1122} and {1011} twinning, respectively. Further, twinning was found to be temperature insensitive except when the ability to nucleate twins posed a significant barrier (for {1011} twinning). Also, the CRSS for {1012} twinning was clearly shown to increase with decreasing alloy purity. A thorough method for determining crystal plasticity modelling parameters based on experimental data was formulated. Additionally, twinning was modelled in a physically realistic manner influenced by the present findings using the visco-plastic self-consistent (VPSC) model. In particular: the activity of twinning decreased in a natural way due to greater difficulty in its operation rather than through an enforced saturation; and hardening or softening due to changes in orientation and dynamic Hall-Petch hardening were important. The rigorous modelling procedure gave great confidence in the key experimental findings.
7

Micromechanical modeling of cleavage fracture in polycrystalline materials

Stec, Mateusz January 2008 (has links)
Cleavage fracture in ferritic steels can be defined as a sequence of few critical steps. At first nucleation of a microcrack takes place, often in a hard inclusion. This microcrack then propagates into the surrounding matrix material. The last obstacle before failure is the encounter of grain boundaries. If a microcrack is not arrested during any of those steps, cleavage takes place. Temperature plays an important role since it changes the failure mode from ductile to brittle in a narrow temperature interval. In papers A and B micromechanical models of the last critical phase are developed (cleavage over a grain boundary) in order to examine the mechanics of this phase. An extensive parameter study is performed in Paper A, where cleavage planes of two grains are allowed to tilt relative each other. It is there shown that triaxiality has a significant effect on the largest grain size that can arrest a rapidly propagating microcrack. This effect is explained by the development of the plastic zone prior to crack growth. The effect of temperature, addressed through a change in the visco-plastic response of the ferrite, shows that the critical grain size increases with the temperature. This implies that with an increasing temperature more cracks can be arrested, that is to say that less can become critical and thus that the resistance to fracture increases. Paper B shows simulations of microcrack propagation when the cleavage planes of two neighboring grains are tilted and twisted relatively each other. It is shown that when a microcrack enters a new grain, it first does it along primary cleavage planes. During further growth the crack front is protruded along the primary planes and lags behind along the secondary ones. The effect of tilt and twist on the critical grain size is decoupled with twist misorientation offering a greater resistance to propagation. Simulations of cracking of a particle and microcrack growth across an inclusion-matrix interface are made in Paper C. It is shown that the particle stress can be expressed by an Eshelby type expression modified for plasticity. The analysis of dynamic growth, results in a modified Griffith expression. Both findings are implemented into a micromechanics-based probabilistic model for cleavage that is of a weakest link type and incorporates all critical phases of cleavage: crack nucleation, propagation over particle-matrix interface and into consecutive grains. The proposed model depends on six parameters, which are obtained for three temperatures in Paper D using experimental data from SE(B) tests. At the lowest temperature, -30° , the model gives an excellent prediction of the cumulative failure probability by cleavage fracture and captures the threshold toughness and the experimental scatter. At 25º  and 55º  the model slightly overestimates the fracture probability. In Paper E a serie of fracture experiments is performed on half-elliptical surface cracks at 25º in order to further verify the model. Experiments show a significant scatter in the fracture toughness. The model significantly overestimates the fracture probability for this crack geometry. / QC 20100910
8

Numerical modeling of soil flow and pressure distribution on a simple tillage tool using computational fluid dynamics

Karmakar, Subrata 28 October 2005
<p>Soils, in general, undergo both elastic and plastic deformations upon loading. Strain dependant anisotropic elasto-plastic models are required for realistic modeling for soil-tool mechanics that will address issues like stress history and soil anisotropy. Although several such models have been proposed, the science of coupled poro-mechanical analysis of an unsaturated soil has not been fully addressed.</p><p>Tillage tool modeling is primarily concerned with the analysis of soil deformation patterns and development of force prediction models for design optimization. Most of the models are based on quasi-static soil failure patterns that cause difficulty in accurately predicting soil-tool behaviour and soil forces for high speed operation. In recent years efforts have been made to improve the conventional analytical and experimental models by numerical approaches. Numerical simulations of soil-tool interactions using finite element modeling (FEM) and discrete element method (DEM) were mostly based on a solid mechanics approach. Due to limitations of constitutive relations, predictions of these numerical models have not been able to address tillage dynamics with high shear rates. The contribution of this research was to study the dynamics of soil-tool interaction using computational fluid dynamics (CFD) from the perspective of soil visco-plastic behavior.</p><p>A motorised soil rheometer was developed for evaluating soil visco-plastic parameters for CFD simulations. The apparatus was used to determine soil yield stress and viscosity at different soil moisture and compaction levels.</p><p>Three-dimensional CFD analyses were carried out using a commercial software CFX 4.4 to observe soil failure patterns around a tool and the pressure distribution on and around the tool. Duct flow as well as free-surface flow simulations of visco-plastic soil as a non-Newtonian Bingham material indicated soil deformation comprising of plastic flow and plug flow patterns. The soil failure front advancement demonstrated a critical speed range of 4 to 6.5 m s-1 where advancement of the failure front did not increase with speed. Soil pressure on the tool surface increased with the tool operating speed. Pressure distribution on the tool surface and draft requirement agreed well with the published literature based on experimental results and FEM analysis. The CFD approach, in its first attempt to tillage process, demonstrated its greater potential for dynamic modeling of soil-tool interaction.</p>
9

Numerical modeling of soil flow and pressure distribution on a simple tillage tool using computational fluid dynamics

Karmakar, Subrata 28 October 2005 (has links)
<p>Soils, in general, undergo both elastic and plastic deformations upon loading. Strain dependant anisotropic elasto-plastic models are required for realistic modeling for soil-tool mechanics that will address issues like stress history and soil anisotropy. Although several such models have been proposed, the science of coupled poro-mechanical analysis of an unsaturated soil has not been fully addressed.</p><p>Tillage tool modeling is primarily concerned with the analysis of soil deformation patterns and development of force prediction models for design optimization. Most of the models are based on quasi-static soil failure patterns that cause difficulty in accurately predicting soil-tool behaviour and soil forces for high speed operation. In recent years efforts have been made to improve the conventional analytical and experimental models by numerical approaches. Numerical simulations of soil-tool interactions using finite element modeling (FEM) and discrete element method (DEM) were mostly based on a solid mechanics approach. Due to limitations of constitutive relations, predictions of these numerical models have not been able to address tillage dynamics with high shear rates. The contribution of this research was to study the dynamics of soil-tool interaction using computational fluid dynamics (CFD) from the perspective of soil visco-plastic behavior.</p><p>A motorised soil rheometer was developed for evaluating soil visco-plastic parameters for CFD simulations. The apparatus was used to determine soil yield stress and viscosity at different soil moisture and compaction levels.</p><p>Three-dimensional CFD analyses were carried out using a commercial software CFX 4.4 to observe soil failure patterns around a tool and the pressure distribution on and around the tool. Duct flow as well as free-surface flow simulations of visco-plastic soil as a non-Newtonian Bingham material indicated soil deformation comprising of plastic flow and plug flow patterns. The soil failure front advancement demonstrated a critical speed range of 4 to 6.5 m s-1 where advancement of the failure front did not increase with speed. Soil pressure on the tool surface increased with the tool operating speed. Pressure distribution on the tool surface and draft requirement agreed well with the published literature based on experimental results and FEM analysis. The CFD approach, in its first attempt to tillage process, demonstrated its greater potential for dynamic modeling of soil-tool interaction.</p>
10

Étude du comportement visco-plastique du dioxyde d'uranium : quantification par analyse EBSD et ECCI des effets liés aux conditions de sollicitation et à la microstructure initiale / Study of the visco-plastic behavior of uranium dioxide : quantification by EBSD and ECCI analysis of the effects related to the stress conditions and the initial microstructure

Ben Saada, Mariem 12 December 2017 (has links)
Le dioxyde d’uranium (UO2) est utilisé en tant que combustible, sous forme de pastilles élaborées par métallurgie des poudres, dans les réacteurs nucléaires à eau pressurisée. Lors de transitoires de puissance, le centre des pastilles est le siège de mécanismes de déformation visco-plastique qui peuvent être partiellement reproduits, hors irradiation, par des essais de compression uniaxiale à haute température (typiquement 1500°C). Les conditions de sollicitation et la microstructure initiale des pastilles d’UO2 ont une influence sur leur comportement mécanique macroscopique. A l’échelle des grains, des mécanismes de sous-structuration interviennent mais, à ce jour, la sous-structure n’est pas quantifiée et le rôle des pores sur ces mécanismes n’est pas connu. Afin d’apporter des réponses sur ces points, deux lots de pastilles (L1 et L2) de taille de grains similaires, de même fraction volumique de pores, mais ceux-ci étant distribués différemment (2,5 fois plus de pores intra-granulaires dans L1 que dans L2), ont été fabriqués. Ils ont ensuite été soumis à des essais mécaniques dans différentes conditions. Le résultat montre que le lot L2 présente une vitesse de fluage plus élevée que le lot L1. Les techniques Electron BackScatter Diffraction (EBSD) et Electron Channeling Contrast Imaging (ECCI) ont été mises en œuvre et optimisées pour suivre l’évolution de la microstructure après déformation. En EBSD, le développement d’une procédure adaptée aux matériaux poreux a permis de détecter des sous-joints de grains (S-JG) de très faible désorientation (jusqu’à 0,1°), de mener une étude statistique de l'évolution de la sous-structuration des grains et d'évaluer la densité de dislocations géométriquement nécessaires générées. Différents types d’arrangements de dislocations formant les S-JG ont été révélés et analysés par ECCI. Grâce à la complémentarité de l’EBSD et de l’ECCI, la répartition des pores dans les grains et la localisation des S-JG ont pu être mises en regard. Les résultats montrent que le nombre ainsi que la fraction linéaire des S-JG et leur désorientation augmente avec le taux et la vitesse de déformation. Aux forts taux de déformation, cela conduit à la formation de nouveaux grains par un mécanisme de restauration/recristallisation dynamique par rotation de sous-grains. Pour des conditions de sollicitation identiques, les échantillons du lot L1 présentent un nombre et une fraction linéaire de S-JG nettement supérieurs à ceux du lot L2. De plus, dans le lot L1, les S-JG se localisent essentiellement à proximité des joints de grains alors qu’ils sont répartis dans l’ensemble du grain pour le lot L2. Ces différences seraient liées à une réduction du libre parcours moyen des dislocations du fait de la présence des pores intra-granulaires / Uranium dioxide (UO2) is used as a fuel, in pressurized water nuclear reactors, in the form of pellets produced by powder metallurgy. During power transients, the center part of pellets undergoes visco-plastic deformation by creep mechanisms. These mechanisms can be partially reproduced, out of irradiation, by uniaxial compression tests at high temperature (typically 1500°C). Testing conditions and initial microstructure of the UO2 pellets influence their macroscopic mechanical behavior. At the grain scale, sub-structuring mechanisms are involved, but, up to now, the sub-structure is not quantified and the role of pores on these mechanisms is unknown. In order to provide answers to these points, two batches of pellets (L1 and L2), characterized by a similar grain size, a same volume fraction of pores, but different pores distribution (2.5 times more intra-granular pores in L1 than in L2), were elaborated. They were submitted to mechanical tests under different conditions. The result shows that L1 has as a lower creep rate than L2. Electron Backscatter Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI) techniques were used and optimized for porous materials to analyze the evolution of the microstructure after deformation. An original EBSD methodology was implemented to detect Sub-Grain Boundaries (S-GB) with very low disorientation angles (down to 0.1°), study statistically the grain fragmentation into sub-grains and evaluate the average density of the geometrically necessary dislocations. Thanks to ECCI, the arrangement of dislocations in some S-GB was evidenced and analyzed. EBSD and ECCI complementarity allowed relating the distribution of pores within the grains and the S-GB location. The results obtained on the two batches show that the number and the linear fraction of S-GB increases with the deformation level and rate. At high deformation rates, new grains appear by a mechanism of dynamic recovery/recrystallization by rotation of sub-grains. For identical loading conditions and strain rates, the samples of batch L1 have a number and a linear fraction of S-GB that are significantly higher than those of batch L2. Furthermore, in batch L1, S-GB are located essentially in the vicinity of the grain boundaries while they are distributed throughout the grain for batch L2. These microstructural differences seem to be related to a dislocation's mean free path reduction due to the presence of intra-granular pores

Page generated in 0.0653 seconds