• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 12
  • 12
  • 11
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Channelling investigation of the behaviour of urania under low-energy ion irradiation / Étude par canalisation du comportement du dioxyde d’uranium irradié avec des ions de basse énergie

Nguyen, Tien Hien 05 December 2013 (has links)
Cette thèse est consacrée à l'étude de la déstabilisation structurale du dioxyded' uranium monocristallin. L'irradiation avec des ions Xe de 470 keV, Ce de 500 keV et La de 500 keV (correspondant à un parcours projeté Rp 85 nm et à l'écart type delta Rp 40 nm selon le code de calcul SRIM) ont été réalisées pour étudier la déstabilisation du monocristal induit, d'une part, par la création de défauts dû au processus de ralentissement nucléaire des fragments de fission à la fin de leur parcours (contribution balistique),et, d'autre part, par l'incorporation de produits de fission à forte concentration (contribution chimique). L'énergie cinétique des éléments incorporés a été choisie de sorte que leurs parcours dans le solide soient identiques afin de comparer directement les effets induits par des espèces solubles (La et Ce) et insolubles (Xe) dans le dioxyde d'uranium.La Spectrométrie de Rétrodiffusion Rutherford en canalisation (RBS/C) a été appliquée pour caractériser et quantifier les défauts générés par l'irradiation. Les données ont été analysées par simulation Monte-Carlo en considérant un modèle original comportant de deux-type de défauts (i) des atomes aléatoirement déplacés dans le cristal (RDA) et (ii) des distorsions des ranges atomiques (BC). L'accumulation de la fraction d'atomes déplacés RDA avec l'augmentation de la fluence conduit à une forte augmentation du nombre dedéfauts observé entre 4 et 7 dpa, indépendamment de la nature des ions. Une seconde augmentation spectaculaire est observée à partir de 300 dpa (correspondant à une concentration excédant 5 % atomique d'ions implantes) pour le cas spécifique des cristaux irradiés avec des ions Xe. Un comportement différentié est clairement observé pour les espèces solubles par rapport à leurs homologues insolubles. Cette différence se traduit d'une part par l'augmentation spectaculaire de RDA lorsque le cristal est implanté à très haute concentration dans le cas d'espèce insolubles, et, d'autre part, par un endommagement plus prononcé entre 7 et 300 dpa. Ce phénomène est notamment la conséquence des différences de taille entre les rayons atomiques de La et de Ce, très inférieure à celles du Xe. A contrario, l'accumulation de défauts de type distorsion des rangées atomiques BC avec l'augmentation de la fluence conduit à une évolution très similaire quelle que soit la nature de l'élément incorpore. Cette augmentation se produit principalement entre 10 et 100 dpa - correspondant à un plateau pour l'évolution des défauts de type RDA – et traduit une importante évolution structurale du dioxyde d'uranium irradie, explorée pour la première fois dans ce travail de thèse. / This thesis is dedicated to the investigation of the structural destabilisation of UO2 single crystal. Irradiations with 470-keV Xe, 500-keV Ce and 500-keV La ions (with corresponding ion range of Rp 85 nm and range straggling of Delta Rp _ 40 nm according to SRIM calculation) have been performed to investigate the destabilisation of UO2 single crystals induce by (i) the radiation damage effects due to the nuclear stopping process of a fission fragment at the end of their trajectories (ballistic contribution) and by (ii) the incorporation of a fission product at high concentration (chemical contribution). The energies and masses of bombarding ions were deliberately chosen so that they would have very similar projected range in UO2 in order to compare the effects induced by solubles (La and Ce) versus non soluble Xe species in UO2. Rutherford Backscattering Spectrometry in channelling geometry (RBS/C) was applied to study the defects induced. Channelling data were analysed afterwards by Monte-Carlo simulation with McChasy code assuming a two-class model of defects comprising (i) the randomly displaced atoms (RDA) and the bent channels (BC) defects. The accumulation of RDA with increasing ion fluence leads to a steep increase (build-up of defects) observed from 4 to 7 dpa regardless of nature of ions and a dramatic increase observed from 300 dpa (corresponding to _ 5 at. % of implanted ions) only for Xe irradiated crystal. The difference due to the soluble versus insoluble species was clearly observed. Such a difference was observed via the dramatic increase of RDA when the crystal is implanted at very high concentration only for crystal implanted with insoluble species. Moreover, the difference is also observed via the higher fraction of RDA created in the crystal irradiated with insoluble element. This phenomenon is mostly due to the size of implanted species in the matrix. Insoluble Xe atoms have the atomic radius which is larger than twice the atomic radius of U sub-lattice while soluble La and Ce atoms have the atomic radii of similar size as compared to U atom. Xe creates a much stronger stress field in UO2 crystal in comparison to La or Ce; a higher fraction of RDA is thus created. Conversely, the accumulation of BC with increasing ion fluence leads to very similar evolution versus ion fluence in all crystals implanted with the three elements .
2

Modélisation du comportement élastique des matériaux nanoporeux : application au combustible UO2 / Modeling of the elastic behavior of nanoporous materials : application to UO2 fuel

Haller, Xavier 23 October 2015 (has links)
Le dioxyde d'uranium irradié (UO2), combustible nucléaire des réacteurs à eau pressurisée, contient deux populations de cavités saturées par des gaz de fission : i. des cavités intergranulaires plutôt lenticulaires, dont la taille varie de quelques dizaines à plusieurs centaines de nanomètres, ii. des cavités intragranulaires plutôt sphériques, dont la taille est de l'ordre du nanomètre. Des travaux récents ont montré qu'il existe un effet de surface à l'échelle des cavités nanométriques qui modifie le comportement élastique effectif du combustible. Ce travail vise à proposer un modèle micromécanique analytique capable de tenir compte de cette microstructure hétérogène ainsi que de l'effet de surface afin de décrire le comportement élastique macroscopique de l'UO2 irradié. La démarche mise en oeuvre est fondée sur une modélisation multi-échelles et s'appuie sur des techniques d'homogénéisation en mécanique des matériaux. L'UO2 irradié est décrit comme un matériau poreux contenant des nanocavités sphériques (cavités intragranulaires) et sphéroïdales (cavités intergranulaires), sous pression et orientées aléatoirement. L'effet de surface présent à l'échelle nanométrique est pris en compte via un modèle d'interface imparfaite cohérente entre la matrice et les cavités. Un modèle original fondé sur l'approche par motifs morphologiques représentatifs a été développé afin de décrire le comportement élastique effectif de ce milieu hétérogène. Le modèle analytique proposé repose sur des hypothèses simplificatrices dont la pertinence est évaluée à partir de simulations numériques par éléments finis qui s'appuient sur une formulation spécifique afin de tenir compte de la présence d'interfaces imparfaites cohérentes. / The irradiated uranium dioxide (UO2), which is the nuclear fuel of pressurized water reactors, contains two populations of cavities saturated by fission gaz: i. intergranular cavities almost lenticular in shape whose size ranges between few tens to several hundred nanometers, ii. intragranular cavities, almost spherical in shape whose size is of the order of the nanometer. Recent studies have shown the existence of a surface effect at the scale of nanometric cavities, which influences the effective elastic behavior of the nuclear fuel. In this work, an analytical micromechanical model, which is able to take into account this heterogeneous microstructure and the surface effect at the nanometric scale, is proposed to describe the macroscopic behavior of the irradiated UO2. The approach is based on a multiscale modeling and homogenization techniques in mechanics of materials. The irradiated UO2 is described as a porous media, which contains pressurized spherical nanocavities (intragranular cavities) and randomly oriented pressurized spheroidal cavities (intergranular cavities). The surface effect is taken into account with imperfect coherent interfaces between the matrix and the cavities. A novel model based on the morphologically representative pattern approach has been developed to describe the effective elastic behavior of this heterogeneous medium. The proposed model relies on assumptions whose relevance is evaluated with finite element simulations which require a specific formulation to take into account the imperfect coherent interfaces.
3

A study of point defects in UO2+x and their impact upon fuel properties / Etude des défauts ponctuels dans le dioxyde d'uranium hyper-stoechiométrique et leurs impacts sur les propriétés du combustible

Ma, Yue 07 December 2017 (has links)
Les propriétés d'autodiffusion de l’uranium sont essentielles pour la compréhension d’interaction pastille-gaine dans le réacteur. L'objectif de cette thèse est de déterminer les coefficients d'autodiffusion de l'uranium dans l’$UO_2$ hyper-stœchiométrique qui sont contrôlés, dans certaines conditions thermodynamiques, par les défauts ponctuels. Pour cet objectif, trois études différentes ont été réalisées. La première porte sur la compréhension des défauts d'oxygène et les différents réarrangements du réseau après oxydation. Pour cela, des échantillons d’$UO_2$ et d’$UO_{2+x}$ ont été caractérisés par une diffraction neutronique au sein du laboratoire ILL à Grenoble. Les résultats obtenus de l’analyse par la « Pair Distribution Function » montrent que les ions interstitiels ont tendance à être isolés aux faibles valeurs de x mais ils sont groupés aux valeurs plus élevées de x. La deuxième partie vise à étudier les défauts lacunaires d'uranium, prédominants dans les échantillons d’$UO_{2+x}$ recuits à haute température, qui influent directement sur l'autodiffusion de l'uranium. La méthode non destructive de « Spectroscopie d'annihilation de Positron », implémentée au laboratoire CEMHTI à Orléans, a été appliquée. Les résultats ont montré l'existence des lacunes d'uranium dans le matériau et leurs quantités peuvent être estimées en fonction de la mesure de durée de vie des positrons à l'aide d'un modèle de piégeage. La connaissance de la nature des défauts cationiques et anioniques et des équilibres de défauts aide à comprendre la corrélation entre les propriétés importantes du combustible (e.g, la diffusion, le fluage) et les conditions thermodynamiques (T, pO2). / Uranium self-diffusion properties are essential for the understanding of in-reactor pellet-cladding interaction. The aim of this thesis is to determined uranium self-diffusion coefficients in hyper-stoichiometric uranium dioxide under certain thermodynamic conditions, which indeed are governed by the induced point defects. For that purpose, three separate studies were carried out on virgin material. Firstly, to improve the knowledge of oxygen defects and the rearrangements occurring in the oxygen sub-lattice after oxidation, $UO_2$ and $UO_{2+x}$ samples were characterized by neutron diffraction in ILL Grenoble. The results obtained by a Pair Distribution Function analysis show that interstitial ions tend to be isolated at lower x but cluster at higher x. Secondly, to study the predominant uranium vacancy defects in high-temperature annealed $UO_{2+x}$, which directly influence the uranium self-diffusivity, a non-destructive method – Positron Annihilation Spectroscopy, available in CEMHTI, Orleans has been carried out. The results of Doppler broadening spectroscopy of annihilation of electron-positron pairs has proved the existence of uranium vacancies in the materials, and their concentration can be estimated based on the positron lifetime measurements using a trapping model. The knowledge of the nature relating to both cation and anion defects and defect equilibria are used to understand the correlation between important fuel properties (e.g. diffusion, creep) and thermodynamic conditions (i.e. temperature and oxygen partial pressure).
4

Etude expérimentale et modélisation pour le traitement thermique du système "dioxyde d'uranium - résine époxydique / Experimental study and model development for "uranium dioxide-epoxy resin" heat treatment

Chairat, Aziza 16 March 2015 (has links)
Dans le cadre de la caractérisation des combustibles nucléaires irradiés, une résine est utilisée pour enrober des échantillons de matériau combustible. Or la gestion de ces échantillons après usage implique la définition d'un procédé de séparation du matériau combustible de la résine d'enrobage. Cette séparation est en effet rendue nécessaire par la possibilité de dégradation de la résine et de libération de gaz sous l’effet de phénomènes de radiolyse dus aux rayonnements α, β et γ; des combustibles. Un traitement thermique est envisagé pour cette séparation. Les travaux, qui visent à améliorer la connaissance des phénomènes, s'appuient à la fois sur des expérimentations sur systèmes modèles et sur la modélisation des réactions de pyrolyse de la résine et des transferts couplés de matière, de chaleur et de quantité de mouvement. Une des difficultés de l'étude réside dans la nécessité de maîtriser le procédé à différentes échelles : une échelle globale, correspondant aux conditions de traitement visées dans le four, et une échelle locale correspondant aux conditions au voisinage immédiat du matériau combustible. Les essais expérimentaux sont réalisés d’une part en thermo-balance pour l’acquisition de données cinétiques et d’autre part sur un four pilote afin de traiter des quantités plus significatives de résine. Le procédé choisi comporte deux étapes, une première étape de pyrolyse suivie d’une étape d’oxydation du résidu de pyrolyse. Les deux étapes sont susceptibles d’oxyder le combustible lui-même. En effet, la première étape de pyrolyse conduit à la formation d’un mélange gazeux qui peut rendre l’atmosphère localement oxydante. La seconde étape est oxydante par définition. La pyrolyse de la résine produit des gaz incondensables, de la vapeur d’eau, des goudrons et un résidu carboné dont la teneur finale en hydrogène doit être nulle. L’étude du procédé de pyrolyse comporte plusieurs parties. La première partie consiste à étudier la cinétique globale de dégradation de la résine époxy et à déterminer la cinétique de dégagement des différents gaz. Pour prendre en compte la présence du combustible dans le milieu de traitement, des expériences de traitement d’un mélange époxy-UO2 en thermo-balance ont été réalisées. Les résultats montrent l’absence d’un effet significatif de la présence du combustible. La deuxième partie est l’intégration des résultats expérimentaux obtenus dans le modèle. La modélisation du four est réalisée dans l’environnement COMSOL Multiphysics®. Les résultats montrent un bon accord avec les mesures expérimentales. Sur la base de cette modélisation, une amélioration du four d’essai a été proposée. A la fin de l’étape de pyrolyse, la phase solide résiduelle contient toujours de l’hydrogène. Pour minimiser cette quantité, l’oxydation du résidu de pyrolyse est une étape nécessaire. Deux types de procédés ont été proposés à savoir l’oxydation sous une atmosphère contrôlée en oxygène et la gazéification sous dioxyde de carbone qui permettent l’élimination du résidu de pyrolyse en laissant intègre le combustible uranium dans des conditions bien définies. / In order to characterize nuclear fuels, samples are currently embedded in an epoxy polymer resin. In storage conditions, the presence of organic products in contact with highly radioactive material generates gas due to a radiolysis phenomenon. Samples management imposes the definition of a fuel and resin separation process. This work aims at developing a tool for the optimal design and control of a suitable heat treatment process. This development is based on experiments and on the modeling of the resin pyrolysis reactions coupled to mass, heat and momentum transfers. One of the difficulties of the study lies to the needed process control on various scales: i) on a global scale to represent the treatment conditions and ii) on a local scale to represent the conditions close to fuel material. This study uses a combined modeling - simulation approach with experiments carried out with the help of a thermo-balance for kinetic data acquisition, on the one hand and in an experimental oven, on the other hand. The process will be performed in two stages, resin pyrolysis and residue (Char) oxidation. Nuclear fuel can be oxidized during both stages. Indeed, the pyrolysis degrades the resin and generated pyrolysis gases, which produce an oxidizing atmosphere. Oxidation of pyrolysis residue can modify the structure of spent fuel and liberate fission gases. The resin pyrolysis produced incondensable gases, steam, tar and char. The final hydrogen content in the char has to be as low as possible and close to zero to be sure that the radiolysis phenomenon will never occur during of nuclear fuel storage. The process development has been carried out in stages. The first step is to investigate the overall kinetics of epoxy degradation and the determination of the generated gas kinetics. The influence of the presence of nuclear fuel is investigated with epoxy-UO2 mixture. The results showed no significant effect of the nuclear fuel presence. The second part is the coupling of kinetic model to the partial differential equations (mass, energy and momentum balance) to obtain a representative model of the oven in terms of temperature and chemical species composition. The Modeling of the oven is carried out using COMSOL Multiphysics® software. The results showed a good agreement with experimental measurements. After pyrolysis, char still contains significant amount of hydrogen. To minimize this quantity, the oxidation of the char is a necessary step. Two treatment types are proposed: An oxidation under a controlled oxygen atmosphere and carbon dioxide gasification. These methods are efficient to eliminate the residual of hydrogen content while keeping the fuel integrity.
5

Raman spectroscopy for the characterization of defective spent nuclear fuels during interim storage in pools / Apport de la spectroscopie Raman pour la caractérisation des combustibles nucléaires défectueux en condition d'entreposage sous eau

Mohun, Ritesh 07 November 2017 (has links)
Une signature spécifique des dommages d’irradiation dans le dioxyde d’uranium, le combustible nucléaire le plus utilisé, dénommé « triplet de défauts » a été récemment mis en évidence par spectroscopie Raman. Ce travail vise à savoir comment cette signature peut être utilisée afin de caractériser les combustibles nucléaires irradiés qui sont entreposés sous eau. Pour cela, trois études à effets séparés sont menées. Tout d’abord, une expérience d’irradiation aux électrons montre que le triplet de défauts est dû à des interactions balistiques et est associé aux déplacements dans le sous-réseau d’uranium. Après l’irradiation aux électrons, l’échantillon d’UO2 s’oxyde de manière accélérée, ce qui a été attribué à la migration des lacunes d’oxygène créées par l’irradiation vers la surface. Ensuite, la cinétique de formation du triplet de défauts dans de l’UO2 exposé à des environnements inerte (Ar) et réactif (eau aérée) a été mesurée grâce à un dispositif Raman in-situ. Dans tous les cas, la cinétique peut être décrite par un modèle d’impact direct, mais avec des coefficients numériques différents. Enfin, de manière à simuler le combustible irradié industriel en laboratoire, l’étude de différents composés d’oxydes mixtes a montré le rôle du dopage chimique sur la formation du triplet de défauts. Ces informations seront mises à profit dans les études futures de combustibles défectueux entreposés sous eau. / A specific signature characteristic of irradiation damages in uranium dioxide, the most used nuclear fuel, referred as « triplet defect bands» has recently been evidenced by Raman Spectroscopy. The objective of this study is to determine how this signature can be used to characterize actual spent nuclear fuel stored in pools. For that purpose, three separate effect studies were carried out. Firstly, an electron irradiation experiment shows that the triplet defect bands are due to ballistic interactions and result from the formation displacements in the uranium sub-lattice. Post electron irradiation, the enhanced oxidation of UO2 samples is observed and attributed to the migration of irradiation induced oxygen vacancies towards the surface. The formation kinetics of the triplet defect bands in UO2 when exposed to an inert (Ar) and a reactive (aerated water) contact medium is then investigated through the use of an in-situ Raman installation. Both kinetics can be fitted using a direct impact model, but with different numerical values. Finally, to simulate actual spent nuclear fuels in laboratory conditions, the study of different mixed oxide compounds shows that chemical doping impacts the apparition of the Raman triplet defect bands. The experimental results obtained in this work will be used as complementary data for the interpretation of Raman results of actual defective spent nuclear fuels stored in pool conditions.
6

Comportement thermique des défauts lacunaires induits par l’hélium et les gaz de fission dans le dioxyde d’uranium / Helium behavior and damage induced by fission products in the uranium dioxide

Belhabib, Tayeb 18 December 2012 (has links)
Dans les nouvelles centrales nucléaires dites 4ème génération, comme d’ailleurs les anciennes, le dioxyde d’uranium devra opérer dans des milieux hostiles de températures et d’irradiation avec la présence des produits de fission (PF) et des particules alpha (α). Le fonctionnement dans ces conditions extrêmes induira des déplacements d’atomes et dégradera les propriétés thermiques et mécaniques du combustible UO2. La compréhension du comportement des défauts lacunaires, des PF et de l’hélium est cruciale pour prévoir le comportement du dioxyde d’uranium au sein de ces futures installations nucléaires. La première partie de cette thèse est consacrée à l’étude des défauts lacunaires induits par l’implantation de krypton et d’iode (quelques MeV) dans l’UO2 polycristallin et leurs stades de recuits. L’analyse par spectroscopie d’annihilation de positons (PAS) a permis de mettre en évidence la création de défauts de Schottky VU-2VO dans le cas des implantations iode et la formation de clusters lacunaires contenant du gaz pour les implantations krypton. L’évolution en température de ces défauts générés dépend des paramètres d’implantation (nature des ions, énergie, fluence). Cette étude a montré les rôles importants que peuvent jouer les défauts lacunaires et la présence des gaz de fission dans l’évolution du matériau UO2. Ensuite, nous nous sommes intéressés à l’étude et à la caractérisation, par PAS et les techniques d’analyse par faisceau d’ions (NRA/C et RBS/C), du comportement de l’hélium dans l’UO2. Les mesures de NRA/C et RBS/C révèlent une localisation d’une grande fraction d’hélium dans les sites interstitiels octaédriques de la matrice UO2. La localisation de l’hélium reste stable dans ces sites pour T< 600°C, évoluent légèrement entre 600 et 700°C et devient aléatoire à 800°C. Les mesures PAS mettent en évidence trois stades d’évolution des défauts lacunaires : la recombinaison par migration des interstitiels d’oxygène, l’agglomération des défauts entre 600 et 800°C et leur dissociation et élimination lorsque la température augmente. Ces résultats suggèrent que le transport d'hélium est assisté par les défauts lacunaires. / In the new fourth generation nuclear plants, as in the old ones, uranium dioxide must operate in hostile environments of temperature and irradiation with the presence of fission products (FP) and alpha particles (α). Operation in these extreme conditions will induce atoms displacements and degrade the thermal and mechanical properties of UO2 fuel. Understanding the behavior of induced vacancy defects, FP and helium is crucial to predict the uranium dioxide behavior in the future nuclear reactors. The first part of this thesis is dedicated to the study of vacancy defects induced by krypton and iodine implantation (a few MeV) in the UO2 polycrystalline and of their evolution under annealing. Analysis by positron annihilation spectroscopy (PAS) has highlighted the creation of Schottky defects VU-2VO in the case of iodine implantations and formation of vacancy clusters containing the gas for krypton implantation. The temperature evolution of these defects depends on the implantation parameters (nature of the ion energy, fluence). This study showed the important roles that can play vacancy defects and the presence of fission gases in the evolution of UO2 material. Then we were interested in the study of the helium behavior in UO2 its location and migration, agglomeration and interaction with vacancy defects by using PAS and ion beam analysis (NRA/C and RBS/C). The NRA/C and RBS/C characterizations showed a localization of a large helium fraction in the octahedral interstitial sites of the UO2 matrix. The helium location in these sites remains stable for T <600°C, changing slightly between 600 and 700°C and becomes random at 800°C. Positron annihilation spectroscopy reveals three stages of vacancy defects evolution : The recombination with oxygen interstitial migration, defects agglomeration between 600 and 800°C and their dissociation and elimination when the temperature increases. These results suggest that the He transport is assisted by the vacancy defects.
7

Etude théorique de bulles de gaz rares dans une matrice céramique à haute température : modélisation par des approches semi-empiriques / Behaviour of rare confined gases in a high-temperature ceramic matrix : modelling through semi-empirical approaches

Arayro, Jack 18 December 2015 (has links)
Le dioxyde d’uranium UO2 est le combustible standard dans les réacteurs nucléaires à eau pressurisée (REP). Durant le fonctionnement du réacteur les pastilles combustibles subissent des contraintes thermiques et mécaniques. Pour cette raison il est très important de bien connaître les propriétés de ce système à la fois dans les conditions de fonctionnement normales et accidentelles (300 à 2000K). Lors des réactions de fission de l’uranium, des gaz rares comme le xénon sont produits à l’intérieur du combustible. En raison de leur faible solubilité, ces gaz vont former des bulles intra- et inter- granulaires dans l’UO2. La présence de ces bulles dans le combustible a un impact sur les propriétés macroscopiques de ce dernier. A l'échelle nanométrique, les bulles intragranulaires prennent la forme d’un octaèdre facetté, essentiellement suivant les directions (111) et (100). Devant la complexité de l’étude de la stabilité de cet octaèdre, nous avons décomposé le problème afin de pouvoir l’étudier de façon plus systématique et de découpler les différents effets. Dans un premier temps, nous avons déterminé la stabilité des surfaces planes (111) et (100) de l’UO2 et les modifications de microstructure engendrées par leur relaxation. Dans un deuxième temps, nous avons caractérisé les isothermes d’adsorption du xénon sur ces surfaces relaxées, en les comparant à ceux de l’incorporation dans une boîte vide pour identifier les effets de surface. Une attention particulière a été portée sur la microstructure du xénon dans ces systèmes. Finalement, nous avons effectué une analyse des propriétés mécaniques (profils de pression et de contrainte au voisinage des surfaces). / Uranium dioxide UO2 is the standard fuel in nuclear pressurized water reactors (PWR). During the operation of the reactor the fuel pellets undergo thermal and mechanical stresses. For this reason it is very important to understand these thermomechanical properties of this system both in normal operation conditions and accidental situations (300 to 2000K). During fission reactions of uranium, rare gases such as xenon are produced within the fuel. Due to their low solubility, these gases will either be released or form intra- and inter-granular bubbles inside the UO2. The presence of these bubbles in the fuel has an impact on the thermomechanical properties of the latter. We focus in this thesis on the study of intragranularbubbles and their impact on the thermomechanical properties of UO2 , through modeling at the atomic scale. At this scale, intragranular bubbles take the shape of an octahedron, presenting mainly (111) and (100) facets. Given the complexity of the study of the stability of this octahedron, we have simplified the problem in order to study it in a more systematic way and to decouple the various effects. First, the stability of (100) and (111) extended surfaces of UO2 and microscructural modifications generated by their relaxation were studied. In a second step, we dermined adsorption isotherms of xenon on these relaxed surfaces, and compared them to the incorporation ones inside an empty box in order to isolate surface effects. A specific attention has been given to the microstructure of xenon in these systems. Finally, an analysis of the mechanical properties (pressure and stress profiles near by the surface).
8

Étude de réactions hétérogènes autocatalytiques : application à la dissolution du dioxyde d’uranium / Study of autocatalyzed heterogeneous reactions : the case of uranium dioxide

Marc, Philippe 17 December 2014 (has links)
Opération de tête des procédés hydrométallurgiques de recyclage des combustibles nucléaires usés, la dissolution est une étape importante : la mise en solution des éléments chimiques est indispensable avant la réalisation des étapes d’extraction liquide-liquide permettant de faire le tri entre matière valorisable et déchets ultimes. Cette étude a pour objectif de mieux appréhender les phénomènes chimiques, physico-chimiques et hydrodynamiques de la réaction de dissolution du dioxyde d’uranium en milieu nitrique. Elle s’inscrit dans une démarche de modélisation du procédé par l’expression des vitesses intrinsèques de réaction et la description des phénomènes physico-chimiques aux interfaces. Une approche par microscopie optique a permis de confirmer le caractère fortement autocatalytique de la réaction et de mesurer, pour la première fois, les vitesses « vraies » de la réaction chimique. L’attaque des massifs, obtenus par frittage, se fait par des sites préférentiels d’attaque et entraîne le développement de failles dans les massifs qui peuvent aller jusqu’à déliter le massif. Cette attaque non uniforme est rendue possible par l’établissement d’un bullage dans ces failles qui permet un renouvellement périodiquement des réactifs et entretient la réaction en leur sein. Ce point constitue un élément clef du mécanisme : un lien fort entre développement des failles, bullage dans les failles, et vitesses de dissolution globales est mis en évidence dans ce travail. Enfin, un modèle intégrant les bilans couplés de matière liés à l’évolution structurelle du solide et des compositions en phase liquide, et tenant compte du transport aux interfaces, est proposé. Les simulations fondées sur ce modèle sont proches des observations expérimentales, et permettent de reproduire pour la première fois l’effet de différents paramètres réactionnels, comme celui de la diminution des cinétiques lors d’une augmentation de la turbulence / Dissolution is a milestone of the head-end of hydrometallurgical processes used for recycling spent nuclear fuel. The solubilization of the chemical elements is essential before performing the liquid-liquid extraction steps to separate reusable material and final waste. This study aims at better understanding the chemical, physico-chemical and hydrodynamic phenomena of uranium dioxide dissolution reactions in nitric medium. This study is also part of a modeling approach aiming at expressing the intrinsic reaction rates and describing of the physico-chemical phenomena at interfaces. Optical microscopy confirmed the highly autocatalytic nature of the reaction and led to measurements, for the very first time, of "true" chemical kinetics of the reaction. The acid attack of sintering-manufactured solids occurs through preferential attack sites. It develops cracks in the solids that can lead to the cleavage of the solid. This inhomogeneous attack is made possible by the establishment of bubbling in the cracks which allows periodic renewal of the reagents and thus maintains the reaction within the cracks. This point is a key component of the mechanism: a strong link between the development of cracks, bubbling through the cracks, and overall dissolution kinetics is demonstrated in this work. Finally, a model coupling material balance to the structural evolution of the solid and liquid phase compositions, and taking into account the interfacial transport is proposed. The simulations based on this model are close to the experimental observations, and allow to reproduce for the very the first time the effect of various reaction parameters, such as the reduction of overall kinetics when turbulence increases
9

Réactions autocatalytiques hétérogènes : vers le dimensionnement des réacteurs industriels de dissolution du dioxyde d’uranium / Autocatalysis and heterogeneous reactions : A first step towards the design of industrial reactors for uranium dissolution in nitric media

Charlier, Florence 10 November 2017 (has links)
La dissolution du dioxyde d’uranium en milieu nitrique est une étape clef du traitement des combustibles nucléaires usés. Elle précède en effet le procédé PUREX, qui permet l’extraction liquide - liquide des radionucléides valorisables. Cette dissolution est triphasique et autocatalytique, ce qui fait que de nombreux phénomènes impactent la réaction. Une bonne compréhension de ces phénomènes, autant à l’échelle microscopique que macroscopique, est nécessaire pour pouvoir proposer un modèle de la vitesse de disparition du solide au sein des dissolveurs. Les paramètres cinétiques de la réaction de dissolution ont été déterminés, en intégrant son aspect autocatalytique. L’étude cinétique a été réalisée en suivant la dissolution par microscopie optique. Cette technique d’analyse permet une approche uni-particulaire, qui est nécessaire car elle permet de limiter l’accumulation de l’espèce autocatalytique à l’interface solide – liquide. De plus, la dissolution du dioxyde d’uranium produit des oxydes d’azote. Une réaction volumique entre ces gaz et le catalyseur a été mise en évidence. Les cinétiques de cette réaction ont été estimées à partir des résultats expérimentaux. L’importance de la prise en compte des échanges à l’interface gaz – liquide pour définir la concentration de catalyseur en solution a été démontrée. Un modèle a été réalisé sur Matlab pour permettre de discriminer l’influence de ces différents éléments. Ce modèle donne des résultats cohérents avec l’expérimental, aussi bien à l’échelle microscopique que macroscopique. Plusieurs nombres adimensionnels ont également été mis en évidence pour cerner les phénomènes dont l’impact est prépondérant, en fonction de la géométrie et de l’hydrodynamique du dissolveur. Ce modèle a permis de cerner quelques pistes d’optimisation de procédés mettant en jeux des réactions autocatalytiques. Notamment, le fait que pour ces réactions particulières, les échanges aux interfaces solide - liquide et liquide - gaz peuvent être utilisés comme leviers pour maitriser la vitesse de disparition du solide / Recycling of nuclear fuel is based on liquid – liquid extraction. The dissolution of uranium dioxide in nitric medium is hence a key step at the head - end of the entire process. This particular dissolution is triphasic and autocatalytic, which means that numerous phenomena must be taken into account. A complete understanding of these phenomena, at macroscopic and microscopic scale, is necessary in order to model the solid disappearance rate in dissolvers. The kinetical parameters of the reaction were determined for both the catalyzed and non-catalyzed reactions. The kinetic study was realized thanks to a single particle approach. The reaction rates were measured by optical microscopy. This analytical technic enables to limit the catalyst accumulation at the solid - liquid interface. Moreover, nitrous oxides are products of the uranium dioxide dissolution. Evidence of a volumic reaction between these gases and the catalyst were found, and the kinetics of this reaction was estimated from the experimental results. Gas – liquid exchanges were shown to have an important impact on the catalyst concentration in the reactor. A model was realized thanks to the software Matlab to simulate these different phenomena. It was shown to be in good agreement with experimental results, at the microscopic and macroscopic scale. Dimensionless numbers were highlighted to describe the impact of each phenomenon on the solid disappearance, including the influence of the geometry and hydrodynamics of the reactor. Finally, ways of process optimization for autocatalytic reactions were determined thanks to the model. For instance, gas – liquid and solid – liquid exchanges were shown to be an interesting lever to fix the catalyst concentration in the reactor and at the solid surface
10

Étude du comportement visco-plastique du dioxyde d'uranium : quantification par analyse EBSD et ECCI des effets liés aux conditions de sollicitation et à la microstructure initiale / Study of the visco-plastic behavior of uranium dioxide : quantification by EBSD and ECCI analysis of the effects related to the stress conditions and the initial microstructure

Ben Saada, Mariem 12 December 2017 (has links)
Le dioxyde d’uranium (UO2) est utilisé en tant que combustible, sous forme de pastilles élaborées par métallurgie des poudres, dans les réacteurs nucléaires à eau pressurisée. Lors de transitoires de puissance, le centre des pastilles est le siège de mécanismes de déformation visco-plastique qui peuvent être partiellement reproduits, hors irradiation, par des essais de compression uniaxiale à haute température (typiquement 1500°C). Les conditions de sollicitation et la microstructure initiale des pastilles d’UO2 ont une influence sur leur comportement mécanique macroscopique. A l’échelle des grains, des mécanismes de sous-structuration interviennent mais, à ce jour, la sous-structure n’est pas quantifiée et le rôle des pores sur ces mécanismes n’est pas connu. Afin d’apporter des réponses sur ces points, deux lots de pastilles (L1 et L2) de taille de grains similaires, de même fraction volumique de pores, mais ceux-ci étant distribués différemment (2,5 fois plus de pores intra-granulaires dans L1 que dans L2), ont été fabriqués. Ils ont ensuite été soumis à des essais mécaniques dans différentes conditions. Le résultat montre que le lot L2 présente une vitesse de fluage plus élevée que le lot L1. Les techniques Electron BackScatter Diffraction (EBSD) et Electron Channeling Contrast Imaging (ECCI) ont été mises en œuvre et optimisées pour suivre l’évolution de la microstructure après déformation. En EBSD, le développement d’une procédure adaptée aux matériaux poreux a permis de détecter des sous-joints de grains (S-JG) de très faible désorientation (jusqu’à 0,1°), de mener une étude statistique de l'évolution de la sous-structuration des grains et d'évaluer la densité de dislocations géométriquement nécessaires générées. Différents types d’arrangements de dislocations formant les S-JG ont été révélés et analysés par ECCI. Grâce à la complémentarité de l’EBSD et de l’ECCI, la répartition des pores dans les grains et la localisation des S-JG ont pu être mises en regard. Les résultats montrent que le nombre ainsi que la fraction linéaire des S-JG et leur désorientation augmente avec le taux et la vitesse de déformation. Aux forts taux de déformation, cela conduit à la formation de nouveaux grains par un mécanisme de restauration/recristallisation dynamique par rotation de sous-grains. Pour des conditions de sollicitation identiques, les échantillons du lot L1 présentent un nombre et une fraction linéaire de S-JG nettement supérieurs à ceux du lot L2. De plus, dans le lot L1, les S-JG se localisent essentiellement à proximité des joints de grains alors qu’ils sont répartis dans l’ensemble du grain pour le lot L2. Ces différences seraient liées à une réduction du libre parcours moyen des dislocations du fait de la présence des pores intra-granulaires / Uranium dioxide (UO2) is used as a fuel, in pressurized water nuclear reactors, in the form of pellets produced by powder metallurgy. During power transients, the center part of pellets undergoes visco-plastic deformation by creep mechanisms. These mechanisms can be partially reproduced, out of irradiation, by uniaxial compression tests at high temperature (typically 1500°C). Testing conditions and initial microstructure of the UO2 pellets influence their macroscopic mechanical behavior. At the grain scale, sub-structuring mechanisms are involved, but, up to now, the sub-structure is not quantified and the role of pores on these mechanisms is unknown. In order to provide answers to these points, two batches of pellets (L1 and L2), characterized by a similar grain size, a same volume fraction of pores, but different pores distribution (2.5 times more intra-granular pores in L1 than in L2), were elaborated. They were submitted to mechanical tests under different conditions. The result shows that L1 has as a lower creep rate than L2. Electron Backscatter Diffraction (EBSD) and Electron Channeling Contrast Imaging (ECCI) techniques were used and optimized for porous materials to analyze the evolution of the microstructure after deformation. An original EBSD methodology was implemented to detect Sub-Grain Boundaries (S-GB) with very low disorientation angles (down to 0.1°), study statistically the grain fragmentation into sub-grains and evaluate the average density of the geometrically necessary dislocations. Thanks to ECCI, the arrangement of dislocations in some S-GB was evidenced and analyzed. EBSD and ECCI complementarity allowed relating the distribution of pores within the grains and the S-GB location. The results obtained on the two batches show that the number and the linear fraction of S-GB increases with the deformation level and rate. At high deformation rates, new grains appear by a mechanism of dynamic recovery/recrystallization by rotation of sub-grains. For identical loading conditions and strain rates, the samples of batch L1 have a number and a linear fraction of S-GB that are significantly higher than those of batch L2. Furthermore, in batch L1, S-GB are located essentially in the vicinity of the grain boundaries while they are distributed throughout the grain for batch L2. These microstructural differences seem to be related to a dislocation's mean free path reduction due to the presence of intra-granular pores

Page generated in 0.1143 seconds