• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sulphur dioxide capture under fluidized bed combustion conditions / Tholakele Prisca Ngeleka

Ngeleka, Tholakele Prisca January 2005 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350ºC and 200ºC, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with CO2 and traces of CH4, CO, and saturated H2O. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2006.
2

Sulphur dioxide capture under fluidized bed combustion conditions / Tholakele Prisca Ngeleka

Ngeleka, Tholakele Prisca January 2005 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350ºC and 200ºC, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with CO2 and traces of CH4, CO, and saturated H2O. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2006.
3

An investigation into the feasibility of applying the watergas shift process to increase hydrogen production rate of the hybrid sulphur process / T.P. Ngeleka

Ngeleka, Tholakele Prisca January 2008 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350°C and 200°C, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with C02 and traces of CH4, CO, and saturated H20. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
4

An investigation into the feasibility of applying the watergas shift process to increase hydrogen production rate of the hybrid sulphur process / T.P. Ngeleka

Ngeleka, Tholakele Prisca January 2008 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350°C and 200°C, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with C02 and traces of CH4, CO, and saturated H20. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
5

Réactions autocatalytiques hétérogènes : vers le dimensionnement des réacteurs industriels de dissolution du dioxyde d’uranium / Autocatalysis and heterogeneous reactions : A first step towards the design of industrial reactors for uranium dissolution in nitric media

Charlier, Florence 10 November 2017 (has links)
La dissolution du dioxyde d’uranium en milieu nitrique est une étape clef du traitement des combustibles nucléaires usés. Elle précède en effet le procédé PUREX, qui permet l’extraction liquide - liquide des radionucléides valorisables. Cette dissolution est triphasique et autocatalytique, ce qui fait que de nombreux phénomènes impactent la réaction. Une bonne compréhension de ces phénomènes, autant à l’échelle microscopique que macroscopique, est nécessaire pour pouvoir proposer un modèle de la vitesse de disparition du solide au sein des dissolveurs. Les paramètres cinétiques de la réaction de dissolution ont été déterminés, en intégrant son aspect autocatalytique. L’étude cinétique a été réalisée en suivant la dissolution par microscopie optique. Cette technique d’analyse permet une approche uni-particulaire, qui est nécessaire car elle permet de limiter l’accumulation de l’espèce autocatalytique à l’interface solide – liquide. De plus, la dissolution du dioxyde d’uranium produit des oxydes d’azote. Une réaction volumique entre ces gaz et le catalyseur a été mise en évidence. Les cinétiques de cette réaction ont été estimées à partir des résultats expérimentaux. L’importance de la prise en compte des échanges à l’interface gaz – liquide pour définir la concentration de catalyseur en solution a été démontrée. Un modèle a été réalisé sur Matlab pour permettre de discriminer l’influence de ces différents éléments. Ce modèle donne des résultats cohérents avec l’expérimental, aussi bien à l’échelle microscopique que macroscopique. Plusieurs nombres adimensionnels ont également été mis en évidence pour cerner les phénomènes dont l’impact est prépondérant, en fonction de la géométrie et de l’hydrodynamique du dissolveur. Ce modèle a permis de cerner quelques pistes d’optimisation de procédés mettant en jeux des réactions autocatalytiques. Notamment, le fait que pour ces réactions particulières, les échanges aux interfaces solide - liquide et liquide - gaz peuvent être utilisés comme leviers pour maitriser la vitesse de disparition du solide / Recycling of nuclear fuel is based on liquid – liquid extraction. The dissolution of uranium dioxide in nitric medium is hence a key step at the head - end of the entire process. This particular dissolution is triphasic and autocatalytic, which means that numerous phenomena must be taken into account. A complete understanding of these phenomena, at macroscopic and microscopic scale, is necessary in order to model the solid disappearance rate in dissolvers. The kinetical parameters of the reaction were determined for both the catalyzed and non-catalyzed reactions. The kinetic study was realized thanks to a single particle approach. The reaction rates were measured by optical microscopy. This analytical technic enables to limit the catalyst accumulation at the solid - liquid interface. Moreover, nitrous oxides are products of the uranium dioxide dissolution. Evidence of a volumic reaction between these gases and the catalyst were found, and the kinetics of this reaction was estimated from the experimental results. Gas – liquid exchanges were shown to have an important impact on the catalyst concentration in the reactor. A model was realized thanks to the software Matlab to simulate these different phenomena. It was shown to be in good agreement with experimental results, at the microscopic and macroscopic scale. Dimensionless numbers were highlighted to describe the impact of each phenomenon on the solid disappearance, including the influence of the geometry and hydrodynamics of the reactor. Finally, ways of process optimization for autocatalytic reactions were determined thanks to the model. For instance, gas – liquid and solid – liquid exchanges were shown to be an interesting lever to fix the catalyst concentration in the reactor and at the solid surface

Page generated in 0.0668 seconds