91 |
AVALIAÇÃO DAS EMISSÕES ATMOSFÉRICAS NO PROCESSO DE COZIMENTO DE ANODOS COM A SUBSTITUIÇÃO DO ÓLEO DIESEL POR FLEXGAS / EVALUATION OF EMISSIONS IN ANODES COOKING PROCESS WITH OIL REPLACEMENT FOR DIESEL FLEXGASSantos, Elisângela da Silva Moura 24 October 2014 (has links)
Made available in DSpace on 2016-08-18T17:23:40Z (GMT). No. of bitstreams: 1
DISSERTACAO_ELISANGELA DA SILVA MOURA SANTOS.pdf: 1847149 bytes, checksum: 1e98d3171eaeb584ad735cbcdb3e2bcb (MD5)
Previous issue date: 2014-10-24 / The search for sustainable processes has led industries to invest in innovative and cleaner solution for their production chain, particularly in its atmospheric emissions. Thus, the company studied opted for replacement of the processes of diesel oil by a new fuel termed "flexgas". The baking process of anodes is a major step in the aluminum production process. This step consists in burning diesel oil in pipes which heat indirectly the anodes, formed by a mixture of coke, pitch and butts. This heating should be controlled as it has influence on the quality of the anodes, and consequently the process of aluminum production within the electrolytic cells. In this work we analyze emissions data comparing before and after the replacement of the fuel. We investigated the influence of other operational variables that can affect the results of the emissions of particulates, fluorides and sulfur dioxide in the chimneys of the anode baking furnaces. For this, we propose the first model of multiple linear regression. As a computational tool, we use the R software for the calculation of descriptive measures, model fitting and parameters estimation. / A busca por processos cada vez mais sustentáveis tem levado as indústrias a investirem em soluções inovadoras e menos poluentes para sua cadeia produtiva, em especial nas suas emissões atmosféricas, com isso, a empresa estudada optou pela substituição em um dos processos do óleo diesel por um novo combustível denominado flexgás . O processo de cozimento de anodos é uma etapa de grande importância no processo de produção do alumínio. Essa etapa consiste na queima do óleo diesel em condutos que aquecem de forma indireta os anodos, formados por uma mistura de coque, piche e butts. Esse aquecimento deve ser controlado, pois tem influência na qualidade dos anodos e conseqüentemente no processo de produção de alumínio dentro das cubas eletrolíticas. Neste trabalho analisamos os dados de emissões comparando antes e depois da substituição do combustível. Investigamos a influência de outras variáveis operacionais que podem interferir nos resultados das emissões de particulados, fluoretos e dióxido de enxofre nas chaminés dos fornos de cozimento de anodos. Para isso, propomos inicialmente o modelo de regressão linear múltipla. Como ferramenta computacional, utilizamos o software R para o cálculo de medidas descritivas, ajuste de modelos e estimação de parâmetros.
|
92 |
Cermet Anodes for Solid Oxide Fuel Cells (SOFC) Systems Operating in Multiple Fuel Environments: Effects of Sulfur and Carbon Composition as well as MicrostructureO'Brien, Julie Suzanne January 2012 (has links)
A series of cermet powders of composition NixCo(1-x)O-YSZ were synthesized for testing as cermet anode materials for SOFCs. The Co is found by powder XRD to become incorporated into the crystal lattice of the NiO, thus forming a true alloyed material. SEM and EDS results show two types of particles upon sintering to 1380oC: small, amorphous particles of YSZ and large, crystalline particles of nickel.
The electrochemical oxidation of hydrogen on a cermet anode composed of Ni0.7Co0.3O-YSZ was investigated using a series of many button cells. Through EIS data, cyclic voltammetry data, the exchange current densities for these button cells were determined. Although a relatively large variation was found (expected to be due to microstructural variation) the average values for both methods of measurement is in good agreement in hydrogen.
Following reduction in pure hydrogen, the fuel was changed to a mixture with high concentration of H2S. It was found that a concentration of 10 % H2S/H2 produced a sudden change in anode microstructure and resulted in loss of exchange current density. Lowering the amount of H2S in the initial fuel feed, which allowed for a more gradual microstructural change, allowed the cell to eventually function at concentrations in excess of 10 % H2S/H2. It was determined by OCV values in various concentrations of H2S/H2 that hydrogen is the predominant fuel of choice, even if H2S is available. Following electrochemical testing, slow cooling in a 10 % H2S/H2 mixture following produced metal sulfide spheres, as determined by SEM and EDS.
Investigation in hydrocarbon, alcohol and biodiesel fuels was then undertaken to test the fuel variability of the given cermet anode material. Methane containing 10 % H2S was found to have increased exchange current density relative to poisoned hydrogen. Ethane and biodiesel experienced no increase in exchange current density, but a lengthening of the functional lifetime of the cell was observed, indicating reduced carbon poisoning. Methanol is a promising oxygen-containing SOFC fuel since it produced exchange current density values larger than hydrogen, and showed no evidence of coke formation by post-mortem SEM.
Since oxygen-containing fuels are known to decompose in the gas phase at typical SOFC operating temperatures, the performance in a mixture of various CO/H2 fuels was then investigated. The Ni0.7Co0.3O-YSZ cermet anode gave higher exchange current density values for low ratio of CO/H2 fuels in the range 20/80 and 30/70 compared to pure H2. This is the first example of a Ni-based anode providing higher performance with a CO/H2 mixed fuel than for a pure H2 fuel. Finally, continuous running of a cell with fuel ratio 25/75 CO/H2 for 7 days produced exchange current density values, which were observed to increase significantly above the values for pure H2 during days 1-4 followed by deterioration below the value for hydrogen on subsequent days.
|
93 |
Hybrid Two-Dimensional Nanostructures For Battery ApplicationsBayhan, Zahra 05 1900 (has links)
The increased deployment for renewable energy sources to mitigate the climate crisis has accelerated the need to develop efficient energy storage devices. Batteries are at the top of the list of the most in-demand devices in the current decade. Nowadays, research is in full swing to develop a battery that meets the needs of today’s renewable energy systems, which are intermittent by nature. Within the framework of improving the performance of batteries, there are parameters in the composition of the battery that play an important role in its performance: electrode materials, electrolytes, separators, and other factors. The key to battery development is the manufacture of electrode materials with optimal properties. Two-dimensional (2D) materials have led to advances in this field, firstly, using graphite as the anode in lithium-ion batteries (LIBs). However, when using the standard graphite as the anode for sodium-ion batteries (NIBs), the large ionic size and energetic instability of Na+ limit intercalation, resulting in a low storage capacity. Therefore, other 2D materials with large interlayer spacing need to be identified for use as electrodes.
In this dissertation, our approach is focus on optimizing anode electrode materials by in situ conversion of 2D materials to obtain hybrid materials. These hybrids materials will synergistically improve the performance of LIBs and NIBs by combining the advantages of individual 2D materials. Starting with converted Ti0.87O2 nanosheets to the TiO2/TiS2 hybrid nanosheets. Then, taking advantage of the properties of MXene, we developed hybrid electrodes based on MXenes by converted V2CTx MXene into V2S3@C@V2S3 heterostructures. Finally, we boosted the redox kinetics and cycling stability of Mo2CTx MXene by using a laser scribing process to construct a multiple-scale Mo2CTx/Mo2C-carbon (LS-Mo2CTx) hybrid material.
|
94 |
A High Temperature Planar Solid Oxide Fuel Cell Operating on Phosphine Contaminated Coal SyngasDe Silva, Kandaudage Channa R. 25 July 2011 (has links)
No description available.
|
95 |
<b>Lithium storage mechanisms and Electrochemical behavior of Molybdenum disulfide</b>Xintong Li (18431580) 03 June 2024 (has links)
<p dir="ltr">This study investigates the electrochemical behavior of molybdenum disulfide (MoS<sub>2</sub>) when utilized as an anode material in Li-ion batteries, particularly focusing on the intriguing phenomenon of extra capacity observed beyond theoretical expectations and the unique discharge curve of the first cycle. Employing a robust suite of advanced characterization methods such as in situ and ex situ X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM), the research unravels the complex structural and chemical evolution of MoS<sub>2</sub> throughout its cycling process. A pivotal discovery of the research is the identification of a distinct lithium intercalation mechanism in MoS<sub>2</sub>, which leads to the formation of reversible Li<sub>x</sub>MoS<sub>2</sub>. These phases play a crucial role in contributing to the extra capacity observed in the MoS<sub>2</sub> electrode. Additionally, density functional theory (DFT) calculations have been utilized to explore the potential for overlithiation within MoS<sub>2</sub>, suggesting that Li<sub>5</sub>MoS<sub>2</sub> could be the most energetically favorable phase during the lithiation-delithiation process. This study also explores the energetics of a Li-rich phase forming on the surface of Li<sub>4</sub>MoS2, indicating that this configuration is energetically advantageous and could contribute further to the extra capacity. The incorporation of reduced graphene oxide (RGO) as a conductive additive in MoS<sub>2</sub> electrodes, demonstrating that RGO notably improves the electrochemical performance, rate capability, and durability of the electrodes. These findings are supported by experimental observations and are crucial for advancing the understanding of MoS<sub>2</sub> as a high-capacity anode material. The implications of this research are significant, offering a pathway to optimize the design and composition of electrode materials to exceed traditional performance and longevity limits in Li-ion batteries.</p>
|
96 |
Contrôle de qualité des anodes de carbone à partir de méthodes statistiques multivariéesParis, Adéline 10 February 2024 (has links)
L’aluminium primaire est produit à partir du procédé électrolytique Hall-Héroult qui nécessite des anodes de carbone pour véhiculer le courant et fournir la source de carbone pour la réaction. La qualité des anodes influence les performances dans les cuves. Or, l’augmentation de la variabilité des matières premières rend la fabrication d’anodes de bonne qualité de plus en plus difficile. L’objectif de ce projet est d’améliorer le contrôle de qualité des anodes avant la cuisson à l’aide de mesures de résistivité électrique. À partir de méthodes statistiques multivariées, les mesures ont été utilisées dans deux optiques différentes : prédictive et explicative. L’optimum de brai qui est défini comme étant la quantité optimale de brai menant aux meilleures propriétés de l’anode pour un mélange d’agrégats donné change plus fréquemment avec l’accroissement de la variabilité de la matière première. Le dépassement de l’optimum peut engendrer des problèmes de collage lors de la cuisson. Un capteur virtuel conçu à partir d’un modèle d’analyse en composantes principales a permis de montrer qu’un bris dans la structure de corrélation mesuré par l’erreur de prédiction (SPE) semble se produire lorsque les anodes ont un risque de coller lors de la cuisson. Son application sur des données d’optimisation de brai a aussi été réalisée. Afin d’améliorer la compréhension des paramètres influençant la résistivité de l’anode, un modèle par projection des moindres carrés partiels en blocs séquentiels (SMB-PLS) a été développé. Il a permis d’expliquer 54 % des variations contenues dans les mesures de résistivité à partir des données opératoires, de matières premières et de formulation. Son interprétation a montré que la variabilité de la résistivité de l’anode verte est principalement causée par les matières premières utilisées et que les relations observées sont conformes avec la littérature et les connaissances du procédé. / Primary aluminum is produced through the Hall-Héroult process. Carbon anodes are used in this electrolytic process to provide the carbon source for the reaction and to distribute electrical current across the cells. Anode quality influences cell performance. However,increasing raw material variability has rendered the production of high-quality anodes more difficult. The objective of this project is to improve carbon anode quality control before baking by using anode electrical resistivity measurements. Multivariate statistical methods were applied to create two types of models: predictive and explanatory. For a given aggregate, the optimum pitch demand (OPD) is the amount of pitch that yields the best anode properties. High raw material variability causes the OPD to change more frequently, which makes it difficult to add the correct amount of pitch. This can lead to post-baking sticking problems when the optimum is exceeded. A soft sensor was developed based on a principal component analysis (PCA). The integrity of the correlation structure,as measured by the Squared Prediction Error (SPE), appears to break down during high-risk periods for anode sticking. The soft sensor was also tested on data collected during pitch optimization experiments.A sequential multi-block PLS model (SMB-PLS) was developed to determine which parameters influence anode resistivity. Raw material properties, anode formulation and process parameters collectively explain 54 % of the variability in the anode resistivity measurements.The model shows that coke and pitch properties have the greatest impact on green anode electrical resistivity. In addition, the main relationships between process variables implied by the model agree with the relevant literature and process knowledge.
|
97 |
Discrete element method simulation of packing and rheological properties of coke and coke/pitch mixturesMajidi, Behzad 10 May 2024 (has links)
La production mondiale d’aluminium, produit via le procédé Hall Héroult, est actuellement autour de 60000 tonnes annuellement. Ce procédé a principalement conservé le concept original développé en 1886. Les anodes de carbone précuites utlisées dans ce procédé représentent une part importante du design des cellules d’électrolyse de l’aluminium. Les anodes font partie de la réaction chimique de la réduction de l’alumine et sont consommées lors du processus d’électrolyse. De ce fait, le niveau de consommation et la qualité des anodes ont un effet direct sur la performance des alumineries dans le marché extrêmement compétitif de la production d’aluminium. Bien que le processus et le design des anodes datent de 130 ans, l’effet des propriétés des matières premières sur la qualité finale des anodes n’est pas tout à fait maîtrisé, nécessitant ainsi des recherches approfondies. Les anodes de carbone sont composées de particules de coke, de pitch et de mégots d’anodes. Le pitch à la température de mélange et de formage est un liquide. Par conséquent, le mélange est une pâte de coke et des agrégats de mégots et pitch agissant comme liant. Le comportement de l'écoulement et du compactage de ce mélange en raison de la coexistence d'une variété de paramètres physiques, chimiques et mécaniques sont des phénomènes complexes. Compte tenu de l'importance des anodes de haute qualité et de longue durée en performance et donc l'économie des cellules de réduction, sous-estimer et prédire les propriétés finales des anodes sont très importantes pour les fonderies. La modélisation numérique dans des problèmes aussi complexes peut fournir un laboratoire virtuel où les effets de différents paramètres de processus ou des matériaux sur la qualité de l'anode peuvent être étudiés sans risquer la performance du pot. Toutefois, le choix de la méthode numérique est une décision critique qui doit être prise en fonction de la physique du problème et de l'échelle géométrique des problèmes étudiés. La méthode des éléments discrets (DEM) est utilisée dans ce travail de recherche pour modéliser les deux phases de la pâte d’anode; les agrégats de coke et le brai de pétrole. Dans cette partie du travail, les modèles DEM d’agrégats de coke sont utilisés pour simuler les tests de densité en vrac vibrée des particules de coke et pour révéler les paramètres impliqués. De par sa nature, la DEM est idéale pour étudier les contacts entre particules. Les résultats de ces travaux seront ensuite utilisés pour proposer de nouvelles recettes d’agrégats secs avec une densité en vrac supérieure. La résistivité électrique de lits de particules a été mesurée expérimentalement. Les informations sur les contacts entre particules obtenues à partir des modèles numériques ont été utilisées pour expliquer la résistivité électrique de lits de particules avec différentes distribution de tailles de particules. Les résultats ont montré que lorsque le nombre de contacts par unité de volume augmente dans un échantillon, la résistivité électrique augmente aussi. La densité compactée du lit de particules a aussi une influence sur le passage de courant dans les matériaux granulaires. D’après les résultats obtenus, conserver la densité de contacts aussi basse que possible est bénéfique pour la conductivité électrique s’il n’a pas d’impact négatif sur la densité compactée. Le brai de houille est un matériau viscoélastique à température élevée. Dans ce travail, les propriétés rhéologiques du brai et de la matrice liante (brai + particules fines de coke) ont été mesurées expérimentalement en utilisant un rhéomètre à cisaillement dynamique à 135, 140 145 et 150 °C. Le modèle de Burger à quatre éléments est alors utilisé pour modéliser le comportement mécanique du brai à 150 °C. Le modèle vérifié est alors utilisé pour étudier les propriétés rhéologiques du brai et du mélange coke /brai à 150 °C. Le modèle de Burger calibré démontre une bonne prédiction des propriétés viscoélastiques du brai et de la matrice liante à différentes températures. Les résultats obtenus montrent que, considérant la physique du problème, la méthode des éléments distincts est une technique de simulation numérique adaptée pour étudier les effets des matières premières sur les propriétés mécaniques et physiques des mélanges coke /brai. / Global aluminum production now is around 60 000 metric tonnes, annually, which is produced by the Hall-Héroult process. The process has mostly kept the original concept developed in 1886. Pre-baked carbon anodes are an important part of the design of aluminum smelting cells. Anodes are part of the chemical reaction of alumina reduction and are consumed during the process. Thus, quality and properties of anodes have direct effects on the performance and economy of the aluminum production in today’s highly competitive market. Although the design of anodes goes back to 130 years ago, effects of raw materials properties on final quality of anodes still need to be investigated. Anodes are composed of granulated calcined coke, binder pitch and recycled anode butts. Pitch at temperatures of mixing and forming steps is a liquid. Hence the mixture is a paste of coke and butts aggregates with pitch acting as binder. Flow and compaction behavior of this mixture, because of the co-existence of a variety of physical, chemical and mechanical parameters are complicated phenomena. Given the importance of high quality and long lasting anodes in performance and so the economy of the reduction cells, understating and predicting the final properties of anodes are very important for smelters. Numerical modeling in such complicated problems can provide a virtual laboratory where effects of different materials or process parameters on anode quality index can be studied without risking the pot performance. However, the choice of the numerical framework is a critical decision which needs to be taken according to the physics of the problem and the geometrical scale of the investigated problems. Discrete Element Method (DEM) is used in this research work to model the anode paste. In the first step, DEM models of coke aggregates are used to simulate the vibrated bulk density test of coke particles and to reveal the parameters involved. As a micromechanical model, DEM provides a unique opportunity to investigate the particle-particle contacts. The developed DEM models of coke aggregates were then used to propose a new dry aggregates recipe exhibiting higher packing density. Packing density of coke aggregates has direct effect on the baked density of anodes. High density is a very favorable anode quality index as it has positive effects on mechanical strength, and consumption rate of anodes in the cell. Electrical resistivity of bed of particles was experimentally measured. Particle-particle contacts information obtained from numerical models were used to explain the electrical resistivity of samples with different size distribution. Results showed that the increase in the number of contacts in volume unit of a sample increases, the electrical resistivity of the particle bed. Packing density also influences the electrical current transfer in granular systems. According to the obtained results, keeping the contacts density as low as possible is beneficial for electrical conductivity if it does not have a negative effect on packing density. Pitch is a viscoelastic material at elevated temperatures. In the present work, rheological properties of pitch and binder matrix (pitch+fine coke particles) were experimentally measured using a dynamic shear rheometer at 135, 140, 145 and 150 ºC. Four-element Burger’s model is then used to model the mechanical behavior of pitch and binder matrix. The verified model is then used to investigate the rheological properties of pitch and coke/pitch mixtures at 150 ºC. Calibrated Burger’s model showed to have a good prediction of viscoelastic properties of pitch and binder matrix at different temperatures. Obtained numerical results showed that available empirical equations in the literature fail to predict the complex modulus of mixtures of pitch and coke particles. As pitch has viscoelastic response and coke particles have irregular shapes, rheology of this mixture is more complicated and needs well-tailored mathematical models. Complex modulus of pitch decreases by increasing the temperature from 135 to 150 ºC, this makes easier the coke/pitch mixtures to flow. DEM modeling showed that the mixture gets a better compaction and so lower porosity by vibro-compacting at higher temperatures. The ability of pitch to penetrate to inter-particle voids in the porous structure of bed of coke particles was also shown to be improved by temperature. Final anode structure with less porosity and so high density is favorable for its mechanical strength as well as its chemical reaction in the cell as Based on the obtained results and considering the physics of the problem, it can be said that discrete element method is an appropriate numerical simulation technique to study the effects of raw materials and the anode paste formulation on mechanical and physical properties of coke/pitch mixtures. The platform created in the course of this research effort, provides a unique opportunity to study a variety of parameters such as size distribution, shape and content of coke particles, content and rheological properties of pitch on densification of coke/pitch mixtures in vibro-compaction process. Outputs of this thesis provide a better understanding of complicated response of anode paste in the forming process.
|
98 |
Non-destructive evaluation of baked carbon anodes for process & quality control using modal & acousto-ultrasonic testing / Non-destructive evaluation of baked carbon anodes for process and quality control using modal and acousto-ultrasonic testingDe Araujo Costa Rodrigues, Daniel 12 November 2023 (has links)
Titre de l'écran-titre (visionné le 29 juin 2023) / Le marché mondial de l'aluminium demande une réduction des coûts et des impacts environnementaux. Simultanément, la qualité des matières premières requises pour le procédé de production de l'aluminium primaire est de plus en plus variable et leur qualité se dégrade dans le temps. Considérant ces demandes et défis, l'approche traditionnelle de contrôle de qualité des anodes de carbone précuites, qui sont des intrants dans les cellules modernes de production d'aluminium, n'est plus suffisante pour le contrôle et l'optimisation de la production des anodes. Toutefois, de nouvelles techniques d'analyse rapides et non-destructives ont été développées afin d'améliorer le contrôle de leur qualité. Dans cette recherche, un prototype a été conçu pour avancer la recherche de deux des techniques les plus récentes, soit l'analyse acousto-ultrasonique (AU) et l'analyse modale (MA). L'équipement est décrit et une analyse de répétabilité est faite pour démontrer que les techniques peuvent être utilisés pour le contrôle du procédé et de la qualité des anodes. Ensuite, les deux techniques sont testées avec un grand nombre d'échantillons. En plus, une procédure pour estimer les propriétés des anodes basées sur les résultats de l'AU est proposée. Finalement, les trois approches sont combinées pour montrer comment elles se complètent. Pour l'analyse modale, une nouvelle approche pour utiliser les données de la réponse vibratoire des anodes est proposée avec le potentiel d'exploiter la totalité des données disponibles. De plus, elle permet de réduire le nombre de capteurs (accéléromètres) et simplifie significativement la procédure expérimentale en comparaison avec les travaux de recherche antérieurs. La capacité supérieure de détection de défauts de la nouvelle approche a été démontrée sur un grand nombre d'échantillons, en plus de sa répétitivité pour la détection de défauts externes. De façon similaire, une nouvelle approche pour utiliser les données est proposée pour l'analyse acousto-ultrasonique, en améliorant la décomposition des signaux dans différentes bandes de fréquence et en la combinant avec un modèle de classification comme un moyen d'utiliser le système pour discriminer deux classes d'anodes. Ces classes étaient des anodes avec des dommages visibles sur les surfaces externes des anodes et d'autres sans dommage apparent. Il était attendu de l'approche une meilleure résolution temporelle et, par conséquence, une meilleure performance en discrimination, ce qui a été validé à la fin de l'étude. Une technique d'interpolation a été proposée pour les données de l'analyse AU afin d'obtenir une distribution spatiale plus fines des vitesses du son dans les anodes. Un jeu d'échantillons simulés numériquement a été généré pour représenter des anodes et des défauts internes. Ces échantillons ont été utilisés pour confirmer la performance de l'approche proposé à la détection et au positionnement des défauts simulés. Cette approche nous a permis de tester la performance de la technique de manière théorique dans plusieurs situations : différents nombres de capteurs et leur positionnement, différents nombres de défauts et leur taille. La performance a été confirmée avec un groupe d'échantillons d'anodes carottées qui ont été caractérisées en laboratoire et la corrélation entre la vitesse du son estimée et plusieurs propriétés clés des anodes. Finalement, une combinaison entre l'analyse modale et l'AU en utilisant l'analyse modale comme première étape dans une stratégie de contrôle à deux niveaux comme étape de pré-traitement, réduit significativement la quantité d'anodes qui ont besoin d'être analysés par l'AU. Il est aussi démontré que leur combinaison est plus précise en performance de classification que l'utilisation de ces deux méthodes séparément. Ensuite, l'interpolation a été utilisé pour investiguer ce qui caractérise des anodes qui ont été bien, ou mal classifiées. / The global aluminium market demands cost efficiency and environmental impact reductions ever more. Simultaneously raw materials for the production process have become more inconsistent and overall worse in quality. With those increasing demands and challenges, the quality control of baked carbon anodes, a requirement for modern aluminium production cells, using the traditional approach does not allow for tight control and optimization of the anode production process. However, new rapid and non-destructive techniques (NDTs) have been developed which could fulfill the need for better quality control methods. In this research, a prototype equipment was developed to further advance the research in two of the newer techniques, namely acousto-ultrasound (AU) and modal analysis. The equipment is described, and a repeatability evaluation is performed on a set of industrial anodes to prove it can be used for process and quality control. In sequence, both modal analysis and acousto-ultrasonics are tested on a large number of samples. Moreover, a procedure to interpolate the anode's properties based on the AU results is proposed. Finally, the three approaches are combined to show how they complement each other. For modal analysis, a new approach for analyzing the data collected is proposed which has the potential of fully exploiting the available data while simultaneously reducing the number of sensors and significantly simplifying the testing procedure, in comparison with previous research. The approach was shown to be more capable for the same analyzed samples, while also being more repeatable, in the task of detecting the presence of external defects. Similarly, a new method for analyzing data collected is proposed for acousto-ultrasonics regarding the frequency band decomposition combined with a classification model as a means to use the system to discriminate between two classes of anodes. The classes were anodes with visible external damages and anodes without any damages. The approach was expected to deliver better time resolution, and consequently, better performance in the discrimination task, which was confirmed at the end of the study. An interpolation technique was proposed for the AU data and a set of toy examples was generated to simulate anodes and internal defects. Those were used to confirm the performance of the proposed approach in detecting and positioning the simulated defects. This allowed the technique to be tested for its performance, theoretically, in cases with different numbers of sensors, numbers of defects and defect sizes. Its performance was confirmed using a group of core samples from anodes that were analyzed and correlations with the sound speed and key anode properties were established.
|
99 |
Caractérisation des propriétés mécaniques de la pâte de carbone à 150°C dans le but d'optimiser la mise en forme des anodes utilisées dans les cuves Hall-HéroultThibodeau, Stéphane 13 July 2024 (has links)
Les anodes de carbone sont des éléments consommables servant d’électrode dans la réaction électrochimique d’une cuve Hall-Héroult. Ces dernières sont produites massivement via une chaine de production dont la mise en forme est une des étapes critiques puisqu’elle définit une partie de leur qualité. Le procédé de mise en forme actuel n’est pas pleinement optimisé. Des gradients de densité importants à l’intérieur des anodes diminuent leur performance dans les cuves d’électrolyse. Encore aujourd’hui, les anodes de carbone sont produites avec comme seuls critères de qualité leur densité globale et leurs propriétés mécaniques finales. La manufacture d’anodes est optimisée de façon empirique directement sur la chaine de production. Cependant, la qualité d’une anode se résume en une conductivité électrique uniforme afin de minimiser les concentrations de courant qui ont plusieurs effets néfastes sur leur performance et sur les coûts de production d’aluminium. Cette thèse est basée sur l’hypothèse que la conductivité électrique de l’anode n’est influencée que par sa densité considérant une composition chimique uniforme. L’objectif est de caractériser les paramètres d’un modèle afin de nourrir une loi constitutive qui permettra de modéliser la mise en forme des blocs anodiques. L’utilisation de la modélisation numérique permet d’analyser le comportement de la pâte lors de sa mise en forme. Ainsi, il devient possible de prédire les gradients de densité à l’intérieur des anodes et d’optimiser les paramètres de mise en forme pour en améliorer leur qualité. Le modèle sélectionné est basé sur les propriétés mécaniques et tribologiques réelles de la pâte. La thèse débute avec une étude comportementale qui a pour objectif d’améliorer la compréhension des comportements constitutifs de la pâte observés lors d’essais de pressage préliminaires. Cette étude est basée sur des essais de pressage de pâte de carbone chaude produite dans un moule rigide et sur des essais de pressage d’agrégats secs à l’intérieur du même moule instrumenté d’un piézoélectrique permettant d’enregistrer les émissions acoustiques. Cette analyse a précédé la caractérisation des propriétés de la pâte afin de mieux interpréter son comportement mécanique étant donné la nature complexe de ce matériau carboné dont les propriétés mécaniques sont évolutives en fonction de la masse volumique. Un premier montage expérimental a été spécifiquement développé afin de caractériser le module de Young et le coefficient de Poisson de la pâte. Ce même montage a également servi dans la caractérisation de la viscosité (comportement temporel) de la pâte. Il n’existe aucun essai adapté pour caractériser ces propriétés pour ce type de matériau chauffé à 150°C. Un moule à paroi déformable instrumenté de jauges de déformation a été utilisé pour réaliser les essais. Un second montage a été développé pour caractériser les coefficients de friction statique et cinétique de la pâte aussi chauffée à 150°C. Le modèle a été exploité afin de caractériser les propriétés mécaniques de la pâte par identification inverse et pour simuler la mise en forme d’anodes de laboratoire. Les propriétés mécaniques de la pâte obtenues par la caractérisation expérimentale ont été comparées à celles obtenues par la méthode d’identification inverse. Les cartographies tirées des simulations ont également été comparées aux cartographies des anodes pressées en laboratoire. La tomodensitométrie a été utilisée pour produire ces dernières cartographies de densité. Les résultats des simulations confirment qu’il y a un potentiel majeur à l’utilisation de la modélisation numérique comme outil d’optimisation du procédé de mise en forme de la pâte de carbone. La modélisation numérique permet d’évaluer l’influence de chacun des paramètres de mise en forme sans interrompre la production et/ou d’implanter des changements coûteux dans la ligne de production. Cet outil permet donc d’explorer des avenues telles la modulation des paramètres fréquentiels, la modification de la distribution initiale de la pâte dans le moule, la possibilité de mouler l’anode inversée (upside down), etc. afin d’optimiser le processus de mise en forme et d’augmenter la qualité des anodes. / The carbon anode electrodes are consumable elements used in the electrochemical reaction of a Hall-Héroult cell. These are massively produced through a production line whose forming process is a critical step because it defines part of their quality. The currently used forming process is not fully optimized. Significant density gradients inside the anodes decrease their performance in the electrolysis cells. Even today, carbon anodes are produced with only their overall density and final mechanical properties as quality criteria. The anode manufacturing is optimized empirically directly on the production line. However, the quality of the anodes resides in a uniform electrical conductivity to minimize the current concentrations that have several adverse effects on their performance and aluminum production costs. This thesis is based on the assumption that the electrical conductivity of the anode is influenced only by its density, considering a uniform chemical composition. The objective is to characterize the model parameters to feed a constitutive law that will model the forming process of the anode blocks. Numerical modeling is used to analyze the anode paste behaviour during its forming process. Therefore, it becomes possible to predict the anode density gradients and optimize the forming process parameters with the aim of improving their quality. The selected model is based on the real mechanical and tribological anode paste properties. The first study of this thesis aims to improve the understanding of the constitutive behaviour of the carbon paste observed during preliminary paste compression tests. This study is based on compression tests on hot carbon paste and dry aggregates performed in a rigid mould instrumented with a piezoelectric sensor to record acoustic emissions. This analysis was performed prior to the characterization of the paste properties in order to better interpret its mechanical behaviour given by the complex carbonaceous nature of this material whose mechanical properties evolve as a function of density. A first experimental setup was specifically developed to characterize the Young's modulus and Poisson's ratio of the anode paste. This apparatus was also used in the characterization of the paste viscosity (time dependence). There exists no appropriate test to characterize these properties for this type of material heated to 150°C. A deformable wall mould instrumented with strain gauges was used to perform the experiments. A second assembly was developed to characterize the paste’s static and kinetic friction coefficients. The paste was also heated to 150°C. The model was used to characterize the paste’s mechanical properties by reverse identification and simulate the forming process of laboratory scaled anodes. The paste’s mechanical properties obtained by the experimental characterization were compared with those obtained by the reverse identification method. The density mappings obtained from simulations were also compared to the density mappings of the laboratory pressed anodes. Tomography was used to produce these density mappings. Simulation results confirm the major potential of using numerical modeling as an optimization tool of the carbon paste forming process. Numerical modeling is used to evaluate the influence of each of the forming parameters without interrupting production and/or implementing expensive changes in the production line. Thus, this tool allows the exploration of ways to optimize the forming process and increase the quality of the anodes such of the modulation frequency parameters, the modification of the initial paste distribution into the mould, the possibility of forming inverted anodes (upside down), etc.
|
100 |
Relation entre les propriétés physico-chimiques de l'anode en carbone et sa vitesse de réaction sous CO2Chevarin, Francois 12 October 2024 (has links)
L’aluminium de première fusion est, de nos jours, produit principalement par l’électrolyse de l’alumine à 960 °C appelé procédé Hall-Héroult. L’électrolyse est réalisée par le passage du courant électrique entre des anodes en carbone et une cathode en carbone par l’intermédiaire d’un électrolyte (cryolithe : Na3AlF6). Ces anodes sont composées de coke de pétrole et d’anodes usagées (mégots) collés ensemble par du pitch (brai de houille). Dans ce procédé, les anodes sont attaquées lors de l’électrolyse mais également en raison de réactions parasites avec l’air et le CO2 provoquant une surconsommation de ces anodes et créant de la charbonnaille. La charbonnaille est définie par l’ensemble des particules d’anode tombant dans le bain électrolytique et générant de nombreux problèmes électriques. Ce projet de recherche porte sur la compréhension de la consommation (réactivité) des anodes en carbone, utilisées dans le procédé électrochimique, par le CO2 à 960 °C. Dans le but de mieux comprendre cette consommation des anodes, l’étude de la réactivité est divisée en trois sections principales; la réaction du CO2 avec l’anode dite de Boudouard en régime chimique, la réactivité avec de grosses particules et la proposition d’une nouvelle représentation de l’anode. La réaction de Boudouard (CO2 + C → 2 CO) sous régime chimique est contrôlée par les propriétés intrinsèques du matériau carboné (impuretés et niveau de graphitisation). Dans ce projet, les paramètres (taille des particules, masse initiale, débit) du régime chimique, c'est-à-dire sans limitation du transport de masse, ont été déterminés pour des particules d’anode broyées. Le test de réactivité utilisé pour ces particules est un réacteur thermogravimétrique (TGA). La vitesse de réaction apparente obtenue à partir des données brutes du TGA permet d’évaluer la réactivité de l’anode en fonction du pourcentage de gazéification. Les conditions obtenues sont une masse initiale de 2 mg, un temps de broyage des particules de 10 minutes, un débit de 100 ml/min de CO2 et une température de 960 °C. Avec une préparation similaire à l’échantillon d’anode, des particules cuites provenant de chaque constituant d’une anode (coke, pitch et mégot) ont été placés dans le TGA et leur vitesse de réaction apparente a été mesurée. La détermination de la réactivité sous régime chimique de ces matériaux démontre que la vitesse de réaction apparente du pitch (pour un pitch ayant un niveau de graphitisation similaire au coke et pour des matières premières utilisées dans ce projet) n’est pas plus élevée que celles du coke et du mégot (ce qui est en contradiction par rapport à la littérature), ainsi le phénomène de charbonnaille, attribué à une supposée sélectivité du CO2 sur le pitch n’est pas confirmée. La consommation de l’anode en carbone dans la cuve d’électrolyse est contrôlée par les impuretés, par le niveau de graphitisation mais également par le transport de masse à travers sa structure poreuse. Dans ce projet, la gazéification des grosses particules pourrait se rapprocher de la consommation de l’anode industrielle dans une cuve d’électrolyse. La vitesse de réaction apparente mesurée pour 9 tailles de particules d’anode (allant de 33 µm à 4 380 µm de diamètre) a permis de révéler l’effet de la taille, de la porosité et de la masse de l’échantillon sur la réactivité. Trois tailles de particules comprises entre 725 et 2 190 µm ont particulièrement été étudiées car elles sont proches de la taille standardisée (ISO 12981-1; - 1 400 + 1 000 µm). Les surfaces et les volumes spécifiques différentiels de ces trois tailles de particules gazéifiées à 5 pourcentages (0; 15; 25; 35 et 50%) déterminés par adsorption d’argon et par infiltration de mercure ont permis d’évaluer les contributions des gazéifications sous-critique (taille de pores inférieure à la taille critique des pores) et sur-critique (taille de pores supérieure à la taille critique des pores) sur la gazéification totale des anodes sous CO2 à 960 °C. La détermination de la taille critique des pores (TC) pour les 3 tailles de particules (20 µm pour 725 µm et 40 µm pour les particules de 1 200 et 2 190 µm) et la mesure des contributions sous-critique et sur-critique ont permis de révéler que les pores ayant une taille supérieure à cette taille critique jouerait un rôle prépondérant dans la réactivité au CO2 des anodes. En se basant sur une dimension intermédiaire de cet intervalle de taille de particules et sur la norme ISO 12981-1 (utilisée pour mesurer la réactivité au CO2 des particules de coke), les particules comprises entre - 1 400 + 1 000 µm ont été choisies pour mettre en évidence l’effet de la porosité sur la réactivité de l’anode et de ses constituants (coke, pitch, mégot et matrice liante) sous CO2 à 960 °C. La matrice liante est un mélange de fines particules de coke (inférieur à 150 µm) et le pitch. La mesure de la vitesse de réaction apparente de ces matériaux permet d’évaluer que la matrice liante semble avoir une réactivité légèrement plus grande que celles du coke, du mégot et de l’anode et très largement supérieure à celle du pitch (valable pour les matériaux utilisés dans ce projet). Ces différences peuvent s’expliquer par le ratio des impuretés catalysantes et inhibitrices, (Vanadium + Nickel) / Soufre, qui est très élevé dans le cas de la matrice liante et du coke mais également à un niveau de graphitisation légèrement plus faible. L’utilisation du facteur d’efficacité apparent permet de mettre en évidence l’effet de la structure du matériau sur la réactivité de particules de grandes tailles par rapport à la vitesse de réaction en régime chimique. En associant les vitesses de réaction apparente des deux régimes (chimique et particules de grandes tailles) pour les 5 matériaux (anode, coke, pitch, mégot et matrice liante), il est possible de révéler l’effet de la structure. Ainsi, pour l’anode et le pitch, le facteur d’efficacité est très faible (inférieure à 0,3) indiquant par conséquent qu’une structure adaptée de l’anode peut diminuer la réactivité globale. Lors de la caractérisation de ces matériaux afin de comprendre leurs réactivités, il a été révélé que la surface spécifique initiale de l’anode ne peut être estimée par la moyenne pondérée des surfaces de ses constituants (coke, pitch, mégot et matrice liante). Ainsi, malgré une similitude chimique, une division par matière première (coke, pitch et mégot) ou physique (coke, mégot et matrice liante) ne semble pouvoir expliquer cette grande surface spécifique et une nouvelle représentation de l’anode doit être envisagée. En raison d’un manque de support lors de la cuisson, le pitch, cuit seul ou bien cuit sous forme de matrice liante, ne peut pas s’étaler lors de sa pyrolyse. Ainsi, le mixage et la cuisson de trois recettes de coke et de pitch (coke/pitch : 100/0, 95/5 et 85/15 en masse/masse) révèlent une très grande surface spécifique initiale pour la recette 95/5. La réactivité de cette recette et celle de 100/0 sont très similaires alors que celle de 85/15 est très faible alors que celle de l’anode se situe à un niveau intermédiaire. En conséquence, en se basant sur les surfaces spécifiques initiales et sur les réactivités de ces trois recettes, il est possible d’estimer qu’une anode entière est composée de particules de coke partiellement enrobé de pitch (95/5) et totalement enrobé (85/15). / Primary aluminum is mainly produced by electrolysis of alumina at 960 °C by the Hall-Héroult process. The electrolysis is carried out by passing the electric current between carbon anodes and a carbon cathode through molten cryolite (Na3AlF6) that acts as electrolyte. The anodes are consisted of petroleum coke and anode butts bonded together by coal tar pitch. The anodes are consumed in the cell by the electrolysis reaction but also by air and CO2 gas reactions. The anode-gas reactions cause an overconsumption of the anodes and create dusting phenomenon. The dusting is defined by the falling out of anode particles in the electrolytic bath that generates many electrical problems. This research project focuses on the understanding of CO2 consumption (reactivity) of carbon anodes at 960 °C to increase the service life of anodes. In order to reveal the mechanism of the CO2 reactivity of anodes, the present study was divided into three main sections; 1) the reaction of CO2 and carbon, called Boudouard reaction, under chemical regime, 2) the CO2 reactivity of large particles under mass transport limitations and 3) the proposal of a new representation of the anode. The Boudouard reaction (CO2 + C → 2 CO) under chemical regime is controlled by the intrinsic properties of the carbonaceous materials, i.e. the impurities and of graphitization levels. In this project, the parameters (particle size, initial mass and CO2 flow) of chemical regime (without mass transport limitations) were determined for milled anode particles. A Thermo-Gravimetric Analyzer (TGA) was used to measure the CO2 reactivity of anode particles. The apparent reaction rate versus gasification percentage was obtained from the TGA raw data to estimate the carbon activity under CO2 atmosphere. The experimental conditions for chemical regime with TG instrument included an initial mass of 2 mg, 10 minutes of milling and a CO2 flow rate of 100 ml/min at 960 °C. A similar preparation was applied to the anode samples and each constituent of anode (coke, pitch and butt) was prepared and baked separately. The anode constituents were placed in the TGA and their apparent reaction rate was measured. The chemical reactivity of anode constituents showed that the apparent reaction rate of the pitch material (with a similar level of graphitization than that of coke material and for the raw materials used in this project) was not higher than that of the coke and the butt particles (which is in contradiction to the literature) and thus the dusting phenomenon which is attributed to a supposed selectivity of CO2 on pitch constituent was not confirmed. The consumption of the industrial carbon anodes in the electrolytic bath is controlled by the impurities, the level of graphitization and also by the mass transport through its porous structure. In this project, the gasification of large particles could be assimilated at the consumption of industrial anodes. The apparent reaction rates were measured for 9 particle sizes of anode (between 33 µm and 4380 µm of diameter). A larger particle size decreased the reaction rate. Three sizes of anode particles (725, 1200 and 2190 µm) were specifically studied because they are close to the particle sizes recommended by the ISO standard 12981-1 where - 1400 + 1000 µm is used to measure the CO2 reactivity of coke particles. The specific differential surface areas and volumes measured by argon adsorption and mercury infiltration were determined for the 3 particle sizes consumed at 5 gasified percentages (0; 15; 25; 35 and 50%). With the pore volumes, it was possible to weight the internal and external gasification on overall gasification. The determination of the critical pore size (TC) for the 3 particle sizes (20 µm to 725 µm particles and 40 µm for 1200 and 2190 µm particles) and the weights of internal and external gasifications revealed that the pores having a size greater than this critical size could have an essential weight on the overall CO2 reactivity of the anodes. Based on the ISO standard 12981-1, the particles between - 1400 + 1000 µm were chosen to demonstrate the effect of porosity on the CO2 reactivity of the anode and its constituents (coke, pitch, butt and binder matrix) under CO2 at 960 °C. The measurement of apparent reaction rates of these materials revealed the reactivity of binder matrix was slightly higher than those of the coke, butt and anode samples and was much greater than the reactivity of pitch material (considering the materials studied). These differences could be explained by the ratio of catalysts/inhibitor, (Vanadium + Nickel) / Sulfur, which was very high for the binder matrix and coke samples, used in this project and a lower level of graphitization for binder matrix. The butt was also highly reactive because the catalyst effect of sodium on the Boudouard reaction at 960 °C is very important. The apparent effectiveness factor allowed to highlight the effect of structure on the reactivity of large particle sizes compared to the reaction rate under chemical regime. The ratio of apparent reaction rate under mass transport limitations over the rate under chemical regime for the 5 materials (anode, coke, pitch, butt and binder matrix) indicated the porosity impact. The apparent effectiveness factor for anode and pitch samples was very low (less than 0.3 for 4 gasification percentages of 15; 25; 35 and 50%) revealing that a suitable structure of carbon material may decrease the overall reactivity. After characterization of anode and its constituents, it was assumed that the initial surface area of the anode could be estimated by the weighted average of the surface areas of its components (coke + butt + pitch and coke + butt + binder matrix). The binder matrix is a mixture of the fine particles of coke and the pitch material. In spite of similar chemical compositions, classification of raw materials as coke + pitch + butt and coke + butt + binder matrix could not explain the large specific area of anode. Consequently, a new representation of the anode should be considered. Due to the lack of support during baking, the pitch material, baked alone or baked in binder matrix, could not be spread during its pyrolysis. Thus, three recipes of pitch/coke mixtures (coke/pitch: 100/0, 95/5 and 85/15 w/w) were mixed and baked, separately. The 95/5 mixture presented a very large initial surface area (similar to that of anode). The CO2 reactivity was measured in TG instrument at 960 °C. The reactivity of 95/5 composition was very similar to that of 100/0 while the reactivity of 85/15 composition was very low. The anode reactivity had an intermediate level. According to the initial specific surface area and the CO2 reactivity of these three recipes, it was possible to approximate the surface area and the CO2 reactivity of the carbon anode with a mixture of coke particles partially coated (95/5) and fully coated (85/15) with pitch. Consequently, this new assembly could be useful to better understand the wetting of coke by pitch during baking.
|
Page generated in 0.0282 seconds