21 |
L'INAO, de ses origines à la fin des années 1960 : genèse et évolutions du système des vins d'AOCHumbert, Florian 30 September 2011 (has links) (PDF)
Le Comité National des Appellations d'Origine (CNAO), forme première de l'Institut National des Appellations d'Origine (INAO), voit officiellement le jour avec le décret-loi du 30 juillet 1935. Sa création coïncide avec l'établissement d'un nouveau régime, d'une nouvelle norme de qualité pour les vins fins, l'Appellation d'Origine Contrôlée (AOC). L'objectif de cette recherche, en prenant pour terrain d'étude cette institution, est de comprendre les caractéristiques de la normalisation des vins fins entre 1935 et la fin des années 1960, ainsi que les interactions à l'oeuvre entre la sphère publique, l'Etat, et un secteur professionnel, une filière économique, constitué par définition d'acteurs privés. Pour atteindre le but fixé, le propos se structure autour de trois parties, établies selon une logique chronologique. La première partie présente la période originelle de l'institution, c'est-à-dire celle du Comité National des Appellations d'Origine durant l'Entre-deux-guerres. Elle correspond au temps de fondation de l'organisme, d'invention et de développement du système des AOC. Dans un contexte de crises aussi bien politique, économique, sociale que viti-vinicole, le modèle fixe ses règles et se déploie avec rapidité sur le territoire. Au-delà du cadre élaboré, l'affirmation au sein de la profession, en dehors de ses tenants, est en revanche plus progressive et procède par étapes, en raison notamment des foyers de scepticisme, voire de réticences, à son endroit. L'absence de consensus et la multiplicité des configurations locales, en particulier du point de vue des éléments anciens d'expertise et des rapports de force entre producteurs et négociants, participent d'une inscription protéiforme de la norme et de l'élaboration d'ajustements dès ces premières années. Le second moment de l'étude, en focalisant son attention sur la période 1939-1945, est lui aussi marqué par la notion de crise.L'entrée en guerre de la France puis la mise en place du Régime de Vichy, d'un circuit du Ravitaillement et la période d'Occupation bouleversent ainsi largement l'équilibre conçu dans les dernières années de la IIIème République.L'inversion historique de la conjoncture économique de la viti-viniculture, passant d'une surproduction endémique à la pénurie, résume les bouleversements à l'œuvre. Cette période voit également le problème de la fraude rejaillir avec force et prendre une nouvelle dimension. Un mouvement s'affirme donc, de fermeture et de durcissement des règles de la norme. En parallèle, l'assise des AOC est renforcée aux dépens des AOS. Sur le plan institutionnel, le CNAO est confronté à une redéfinition globale de ses rapports à l'État et des cadres de l'organisation de la viti-viniculture. L'analyse s'interrompt en 1945, avec la Libération, afin d'établir le strict bilan de l'organisme et du régime au lendemain de la Deuxième Guerre mondiale. La troisième partie de l'étude débute une nouvelle fois par une période difficile.Marquées par un redémarrage compliqué de l'économie viti-vinicole, le décès de Joseph Capus et sa succession par le baron Le Roy, le passage du CNAO à l'INAO, les années 1945 à 1950 constituent une période charnière de l'histoire de l'institution. Du point de vue chronologique, ce dernier temps de la recherche est de loin le plus long puisqu'il s'étend, pour certains éléments de réflexion jusqu'en 1967, pour d'autre à l'horizon 1970.Des phénomènes de fonds transforment le visage de l'Institut au cours de ces vingt ans. Il s'agit notamment de la réforme de son organisation, de la réflexion sur son statut, du renouvellement de son incarnation ou de la mise en place progressive de l'Organisation Commune du Marché du vin au niveau européen.
|
22 |
BOM removal by biofiltration- Developing a quantitative basis for comparisonShen,Dinghua (David) 14 June 2010 (has links)
Biological filtration (Biofiltration) processes have been used first in Europe and then in North America for decades, however currently there is not a good overall parameter to guide biofiltration design and operation except adopting parameters from traditional particle- removal filtration process. On the basis of the biofilm model developed by Rittmann and McCarty (1980a) and the pseudo-analytical solution for the model, Zhang and Huck (1996a) obtained an analytical solution for PF (plug flow) reactors (which can be used for biofilters approximately) after demonstrating that axial dispersion could be reasonably ignored and developed a new parameter, X*, which incorporates considerations of physical contact time, filter media particle size, kinetics, etc. A small-scale application on peers’ engineering/research data by Huck (1999) demonstrated it was a better indicator than other parameters for biofiltration performance. By collecting, screening and investigating literature on AOC, BDOC and odorous compounds removal by biofiltration process, this thesis applied the X* concept to the collected investigations to assess process performances among different target parameters, different filters and different investigations. To the author’s knowledge, this is the first such attempted comprehensive comparison of literature studies, interpreted in terms of a common parameter (X*). The wide ranges of particle sizes, EBCTs, temperatures and high diversity of pre-treatment and operation conditions for the collected cases were considered to be able to well represent biofiltration practices for studied removal targets.
No significant relationship between EBCTs and removal percentages were found, indicating that EBCT alone is not able to guide biofiltration design and operation. Based on kinetics parameter comparison, BDOC removal-X* relationship was established. A new parameter, θα, was developed in this thesis to refer to estimated X* values only considering EBCT and particle size. θα parameter values were estimated by comparison of ratios of θα products ((θα)’) based on the properly chosen calculation bases. Distribution of the θα values for temperature-favored (i.e. temperature ≥15°C) AOC and BDOC removal biofiltration processes matched the established removal-X* relationship reasonably. Given the exploratory nature of this research and the complexity of attempting quantitations, fits were assessed based on visual comparison. With the assistance of supporting information and by adopting available temperature activity coefficients, temperature-adjustment coefficients for θα values were determined for the different temperature ranges. Temperature-adjusted AOC and BDOC removal-θα relationships were developed and temperature-adjusted θα parameter values for AOC and BDOC removal were also estimated. Comparisons were conducted, showing fair matches based on visual examinations, for most of the temperature ranges. No relationships were found between ozone dosages and AOC/BDOC removal percentages and the statistical analysis indicated there was significant difference of removal efficiencies between ozonated and non-ozonated influents for biofilters, suggesting ozonation may not only increase the amount of BOM for following biofilter and increase the biodegradability of bulk water; it may also increase the biodegradability of AOC and BDOC themselves.
It may not be realistic to obtain the estimated θα values for MIB and geosmin removal by biofiltration. However, plotting θα product vs. removal percentage for the collected MIB and geosmin removal cases shows more positive co-relationships than EBCT-removal percentage relationships visually. A utilization factor η was proposed to guide biofilter design and operation and to assess “over-design” and “under-operated”. Biofilter over-design or under-operated is common for the collected cases.
In general, examining X* (or θα, a parameter incorporating the physical components of X*) provided useful information in terms of evaluation and prediction of biodegradable organic compounds removal by biofiltration, which confirms that X* is a better parameter for biofiltration design and operation than other parameters, such as EBCT.
|
23 |
BOM removal by biofiltration- Developing a quantitative basis for comparisonShen,Dinghua (David) 14 June 2010 (has links)
Biological filtration (Biofiltration) processes have been used first in Europe and then in North America for decades, however currently there is not a good overall parameter to guide biofiltration design and operation except adopting parameters from traditional particle- removal filtration process. On the basis of the biofilm model developed by Rittmann and McCarty (1980a) and the pseudo-analytical solution for the model, Zhang and Huck (1996a) obtained an analytical solution for PF (plug flow) reactors (which can be used for biofilters approximately) after demonstrating that axial dispersion could be reasonably ignored and developed a new parameter, X*, which incorporates considerations of physical contact time, filter media particle size, kinetics, etc. A small-scale application on peers’ engineering/research data by Huck (1999) demonstrated it was a better indicator than other parameters for biofiltration performance. By collecting, screening and investigating literature on AOC, BDOC and odorous compounds removal by biofiltration process, this thesis applied the X* concept to the collected investigations to assess process performances among different target parameters, different filters and different investigations. To the author’s knowledge, this is the first such attempted comprehensive comparison of literature studies, interpreted in terms of a common parameter (X*). The wide ranges of particle sizes, EBCTs, temperatures and high diversity of pre-treatment and operation conditions for the collected cases were considered to be able to well represent biofiltration practices for studied removal targets.
No significant relationship between EBCTs and removal percentages were found, indicating that EBCT alone is not able to guide biofiltration design and operation. Based on kinetics parameter comparison, BDOC removal-X* relationship was established. A new parameter, θα, was developed in this thesis to refer to estimated X* values only considering EBCT and particle size. θα parameter values were estimated by comparison of ratios of θα products ((θα)’) based on the properly chosen calculation bases. Distribution of the θα values for temperature-favored (i.e. temperature ≥15°C) AOC and BDOC removal biofiltration processes matched the established removal-X* relationship reasonably. Given the exploratory nature of this research and the complexity of attempting quantitations, fits were assessed based on visual comparison. With the assistance of supporting information and by adopting available temperature activity coefficients, temperature-adjustment coefficients for θα values were determined for the different temperature ranges. Temperature-adjusted AOC and BDOC removal-θα relationships were developed and temperature-adjusted θα parameter values for AOC and BDOC removal were also estimated. Comparisons were conducted, showing fair matches based on visual examinations, for most of the temperature ranges. No relationships were found between ozone dosages and AOC/BDOC removal percentages and the statistical analysis indicated there was significant difference of removal efficiencies between ozonated and non-ozonated influents for biofilters, suggesting ozonation may not only increase the amount of BOM for following biofilter and increase the biodegradability of bulk water; it may also increase the biodegradability of AOC and BDOC themselves.
It may not be realistic to obtain the estimated θα values for MIB and geosmin removal by biofiltration. However, plotting θα product vs. removal percentage for the collected MIB and geosmin removal cases shows more positive co-relationships than EBCT-removal percentage relationships visually. A utilization factor η was proposed to guide biofilter design and operation and to assess “over-design” and “under-operated”. Biofilter over-design or under-operated is common for the collected cases.
In general, examining X* (or θα, a parameter incorporating the physical components of X*) provided useful information in terms of evaluation and prediction of biodegradable organic compounds removal by biofiltration, which confirms that X* is a better parameter for biofiltration design and operation than other parameters, such as EBCT.
|
Page generated in 0.023 seconds