Spelling suggestions: "subject:"ARNt suppresseur naturel"" "subject:"ARNt suppresseur naturelle""
1 |
Fidélité de la terminaison de la traduction chez les eucaryotes / Translation termination accuracy in eukaryotesBlanchet, Sandra 18 September 2014 (has links)
La terminaison de la traduction se produit lorsqu’un codon stop entre au site A du ribosome où il est reconnu par le facteur de terminaison eRF1 accompagné du facteur eRF3. Cette étape de la traduction est encore mal comprise chez les eucaryotes. Au cours de ma thèse je me suis intéressée à l’étude de la fidélité de la terminaison de la traduction afin de mieux comprendre et caractériser les mécanismes moléculaires mis en jeu lors du décodage du codon stop.L’un de mes projets consistait à mieux caractériser une région du domaine N-terminal d’eRF1, la cavité P1, identifiée comme étant impliquée dans l’efficacité de terminaison. Grâce à une quantification de l’efficacité de translecture de mutants de la cavité P1, j’ai pu mettre en évidence le rôle de résidus clés comme les serines 33 et 70, impliquées dans le décodage spécifique du codon UGA probablement via une interaction directe entre les deux résidus, ou encore l’arginine 65 et la lysine 109, essentielles pour une terminaison efficace sur les trois codons stop. L’analyse par RMN de ces mutants a également permis de montrer que ces résidus étaient importants pour la conformation correcte de la cavité et potentiellement impliqués dans une interaction directe avec l’ARNm. La combinaison des données génétiques et structurales nous a permis de proposer un modèle d’interaction entre l’ARNm et le facteur de terminaison eRF1 dans lequel le codon stop serait reconnu en partie par l’intermédiaire de la cavité P1. Dans la cellule, la terminaison est toujours en compétition avec la translecture, qui correspond à l’incorporation d’un ARNt proche-cognat au niveau du codon stop. Afin d’identifier les acides aminés incorporés par translecture au niveau du codon stop, j’ai mis au point un système basé sur l’expression et la purification de protéines issues de la translecture qui sont ensuite analysées par spectrométrie de masse. J’ai pu mettre en évidence que la glutamine, la tyrosine et la lysine s’incorporent au niveau des codons UAA et UAG, alors que le tryptophane, la cystéine et l’arginine sont retrouvés au niveau du codon UGA. J’ai également pu montrer que le contexte en 5’ n’influençait pas l’incorporation des acides aminés au codon stop mais qu’en revanche, la présence de la paromomycine avait un impact sur la sélection des ARNt suppresseurs naturels. Ce projet permet d’apporter de nouvelles informations sur les règles de décodage grâce à l’analyse des appariements entre codons stop et anticodons des ARNt naturels suppresseurs. Il permet également d’envisager des perspectives thérapeutiques dans le cadre des maladies liées à la présence d’un codon stop prématuré et pour lesquelles le traitement repose sur l’utilisation de la translecture afin de ré-exprimer des protéines entières. / Translation termination occurs when a stop codon enters the A site of the ribosome where it is recognized by eRF1 (eukaryotic release factor 1), associated with eRF3. This step of translation is not yet understood in eukaryotes. During my PhD, I was interested in studying translation termination accuracy to better understand and characterize the molecular mechanisms involved in stop codon decoding.One of my project consisted in characterizing a region in eRF1 N-terminal domain, pocket P1, identified to be involved in termination efficiency. Through a quantification of readthrough efficiency of pocket P1 mutants, I have highlighted the role of key residues, like serine 33 and serine 70, implicated in specific recognition of UGA stop codon, probably through a direct interaction between the two amino acids, and also arginine 65 and lysine 109, essential for efficient termination on the three stop codons. The analysis of the mutants by NMR revealed that these residues are also important for proper conformation of the cavity and potentially involved in a direct interaction with mRNA. The combination of our genetic data and structural analysis allowed us to propose a model of interaction between termination factor eRF1 and the mRNA, in which the stop codon would be recognized partially through pocket P1.In cells, termination always competes with readthrough which corresponds to the incorporation of near-cognate tRNAs at the stop codon. To identify the amino acids inserted by readthrough at the stop codon, I have developed a reporter system based on the expression and purification of readthrough proteins that are analyzed by mass spectrometry. I found that glutamine, tyrosine and lysine are inserted at UAA and UAG stop codons, whereas tryptophan, cysteine and arginine are inserted at UGA stop codon. I also showed that the 5’ nucleotide context does not influence the incorporation of amino acids at the stop codons by readthrough, but that, in contrast, the presence of paromomycin impacted the selection of natural suppressors tRNAs incorporated by readthrough. This project gives us new insights into the decoding rules by analyzing the base pairings between stop codon and near-cognates anticodons. It also allows us to consider therapeutic prospects for the treatment of premature stop codon diseases which uses readthrough as a tool to re-express full-length proteins from mRNAs that are interrupted by the presence of a premature stop codon.
|
Page generated in 0.1051 seconds