• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Depth Dependence Study of Shallow Water Ambient Noise

Chen, Yung-Chien 29 July 2002 (has links)
Of all the forms of radiation known, sound travels through the sea the best, therefore it is widely used in underwater detection and signal transmission. However, the ambient noise in the ocean will affect the quality of these applications, so that understanding of ambient noise is important for improving acoustic capability. Previous literatures show that ambient noise at deep water should decrease with depth, but would it be the same in the shallow? Most studies of ambient noise were made at deep water in the past, the reason is that great depth variation of ambient noise is easily observed. The ASIAEX 2001 South China Sea experiment is on the continental shelf-break, so the depth effect of ambient noise in shallow water can be explored. A typhoon shall affect experimental zone during May 10-14, 2001. From the results of this study, afternoon effect shall affect distribution of temperature and ambient noise under water depth. The other, a typhoon can not only affect seriously ambient noise, but also intercept the shine and variation of sea temperature, and reduce afternoon effect. Another, ambient noise has insignificant change with depth, however it¡¦s is much affected by the variation of temperature, frequency, and occurrence of internal wave.
2

Vertical Directionality Analysis of Low Frequency Ambient Noise in South China Sea Experiment of ASIAEX

Lin, Po-Chang 19 August 2004 (has links)
This study is based upon the vertical line array (VLA) in South China Sea experiment of the Asian Seas International Acoustic Experiment (ASIAEX), dated from May 3, 2001 to May 16, 2001, in which the ambient noise in shallow water was measured. In this paper, we use the beamforming method to calculate the vertical directionality of ambient noise in shallow water, for discussing the noise source distribution, and environmental effects on vertical directionality. The results show that distant shipping noise was observed near the horizontal angles, and surface noise occurred at high grazing angles. It is also discussed that the wind speed effect on the vertical directionality in this paper. Because of the typhoon Cimaron passed the experimental area during the experiment, which make wind speed changed obviously, so it can be found out the wind effect of ambient noise. By analyze the noise fluctuation, it is concluded that the threshold frequency of wind wave affected ambient noise levels were about 400 Hz. And after analyzing the vertical directionality, it is verified that the threshold was lower to 200 Hz. On the other hand, we also note the phenomena of ¡§noise notch¡¨ appeared at some duration when calculating the vertical directionality. The environmental effects (sound speed profile) on the notch, and the presentation of noise notch at different frequencies were discussed. In the end part of this paper, we determined the time when the notch occurred by using the power difference of vertical directionality, and we expect that the results would be important for similar researches in the future.
3

Geoacoustic Parameters Inversion by Ship Noise in the ASIAEX-SCS Experiment

Kuo, Yao-Hsien 03 October 2005 (has links)
Sound propagation can be greatly affected by seabed, especially in shallow water, therefore by understanding the geoacoustic parameters of sea bottom can help to improve the performance of sonar systems. In this study, ship noise collected by the vertical line array (VLA) in South China Sea experiment of the Asian Seas International Acoustics Experiment (ASIAEX SCS) in 2001 was used as a sound source to invert the geoacoustic parameters. The nearest horizontal distance between VLA and the passing ship was estimated by beamforming the receiving sounds on the array, and this distance was used in the sound propagation modal. In the modal, two layers structure were assumed for the bottom, so the sound speed (C1) and density (£l1) of sediment layer, sound speed (C2 ) and density (£l2) of subbottom layer, and total absorption coefficient (£\) need to be inverted. Matched field processing is used to solve this inverse problem, and computing the minimum cost function between the measured and modeled sound field, the best matched bottom parameters are C1¡×1600 m/s¡BC2¡×1650 m/s¡B£l1=1.6 g/cm3¡B£l2=2.1 g/cm3¡B£\=0.6 dB/£f. These results were compared with chirp sonar survey in this area, and the agreement is satisfactory.
4

An Analysis of Low Frequency Ambient Noise in South China Sea

Liu, Chih-Sheng 30 July 2003 (has links)
The study is based upon the Vertical Line Array (VLA) of the Asian Seas International Acoustic Experiment (ASIAEX), dated from May 3, 2001 to May 16, 2001, in which the ambient noise was measured and the six frequencies (including 50, 100, 200, 400, 800, 1,200 Hz) were analyzed. The depth dependence of ambient noise levels in shallow water is not significant, and the fluctuations of ambient noise levels can be measured by Fourier analysis. With the similar analysis on static water pressure and temperature variation, the acoustic data has shown obvious in K1 and M2 tidal periods. The frequency dependence of ambient noise was also investigated, the lower frequency components, 50, 100, and 200 Hz, were mainly contributed from distant shipping noise, and the local wind was the dominating factor in higher frequencies such as 400, 800, and 1,200 Hz. This result was further verified by the increased levels at higher frequency due to the typhoon Cimaron during the experiment. Finally, the probability distribution function of ambient noise levels was calculated at each frequency, and was found the lower frequency ambient noise levels were not significantly affected by the typhoon as higher frequency. The threshold frequency of the ambient noise levels affected by the wind wave is about 400 Hz.

Page generated in 0.0276 seconds