• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploring the Molecular Origin of Jet Fuel Thermal Oxidative Deposition Through Statistical Analysis of Mass Spectral Data and Pyrolysis Gas Chromatography/Mass Spectrometry of Deposits

Christison, Krege Matthew 01 January 2019 (has links)
ASTM D3241 (Standard Test Method for Thermal Oxidation Stability of Aviation Turbine Fuels) measures the thermal oxidative stability of jet fuels under elevated temperature and pressure conditions. When jet fuels fail ASTM D3241, either at the refinery or in the distribution system, there can be supply disruptions and financial losses. Understanding the causes of poor thermal oxidative stability in jet fuels could help prevent or mitigate issues. In order to develop a deeper understanding of the molecular precursors that lead to ASTM D3241 failures, a number of analytical methodologies and data treatment techniques have been developed, applied, and reported here. Statistical analysis of LC/MS ESI data from jet fuels with varying thermal oxidative stabilities allows for the identification of molecules that are significant to ASTM D3241 failures. Differential statistical analysis of LC/MS ESI data from jet fuels before and after thermal oxidative stressing in a QCM reactor elucidates which significant molecules are being consumed during oxidation and which molecules are increasing in abundance. The analysis of thermal oxidative deposits that form during thermal oxidative stressing in the QCM reactor allows for the insight into the molecular components of the deposits. Attapulgus clay removes the polar molecules that lead to thermal oxidative stability issues in the refinery. Extraction of Attapulgus clay that has been used in a refinery to filter jet fuel with a series of solvents removes the polar molecules into a series of fractions. The subsequent analysis of the fractions by comprehensive GCxGC/MS leads to the identification of the different homologous series of molecules that are removed by the clay. The analyses developed and employed here are shown to be particularly useful for the analysis of trace polar nitrogen and oxygen containing molecules. Similar homologous series of molecules are identified across all of the different analyses. It is also clear from some of the analyses, along with previously reported data in the literature, that reactive sulfur-containing molecules are significant to poor thermal oxidative stability as measured by ASTM D3241 and to the formation of thermal oxidative deposits. There is still an opportunity to find methodologies to better characterize the sulfur species present and correlate them to the data that is reported here.
2

Heat Transfer, Fluid Dynamics, and Autoxidation Studies in the Jet Fuel Thermal Oxidation Tester (JFTOT)

Sander, Zachary Hugo January 2012 (has links)
No description available.

Page generated in 0.0318 seconds