• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 471
  • 212
  • 125
  • 31
  • 28
  • 24
  • 22
  • 16
  • 12
  • 11
  • 8
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1046
  • 334
  • 332
  • 184
  • 175
  • 164
  • 139
  • 136
  • 133
  • 131
  • 116
  • 116
  • 97
  • 96
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Hierarchical control of the Atlas experiment.

Barriuso Poy, Alejandro 14 May 2007 (has links)
Hierarchical Control of the ATLAS experimentÀlex Barriuso PoyEls sistemes de control emprats en nous experiments de física d'altes energies són cada dia més complexos a conseqüència de la mida, volum d'informació i complexitat inherent a la instrumentació del detectors. En concret, aquest fet resulta visible en el cas de l'experiment ATLAS (A Toroidal LHC ApparatuS) situat dins del nou accelerador de partícules LHC (Large Hadron Collider) al CERN. ATLAS és el detector de partícules més gran mai construït fruit d'una col·laboració internacional on participen més de 150 instituts i laboratoris d'arreu del món. L'experiment estudia col·lisions protó-protó i, seguint l'estructura clàssica d'un detector de partícules, es composa d'una sèrie de sub-detectors especialitzats i d'un sistema d'imants superconductors que confereixen camp magnètic a l'experiment.Concernent l'operació de ATLAS, existeixen dos sistemes integradors principals. Per una banda, el sistema DAQ (Data AdQuisition) realitza l'adquisició de dades per els conseqüents estudis de física. Per altra banda, el DCS (Detector Control System) s'encarrega d' assegurar la coherent operació de tot l'experiment. Tot i ser dos sistemes independents, ambdós es complementen. Mentre un gestiona les dades utilitzades per als consegüents estudis de física, l'altre gestiona tota la infrastructura relacionada amb l'estat operacional del detector assegurant així la correcta extracció de informació.El DCS, principal argument d'aquesta tesi, supervisa tot el hardware dins al complex de l'experiment incloent tots els serveis dels sub-detectors (ex. alta i baixa tensió, refrigeració, etc.) i la infrastructura general de l'experiment (ex. condicions ambientals). El DCS també és la interfície amb els sistemes externs a l'experiment com per exemple els serveis tècnics CERN (ex. ventilació o electricitat) o, encara més crucial, amb l'accelerador LHC o el DAQ de ATLAS. En total, al voltant de 200.000 canals d'informació seran supervisats en tot moment per el DCS.Un dels principals problemes existents en anteriors experiments era la manca d'estandardització en moltes àrees. Per exemple, degut a l'escenari tècnic de l'època, els sistemes de control a l'era LEP (1989-2000) utilitzaven diferents llenguatges de programació, diferents protocols de comunicació i hardware 'fet a mida'. Com a conseqüència, el desenvolupament i manteniment del DCS era en molts casos una tasca difícil. Amb la intenció de solventar els problemes del passat, el projecte JCOP va ser creat al CERN a finals de 1997. Els diferents sub-detectors de ATLAS (així com dels 3 altres principals experiments del LHC) estan composats de múltiples equips de persones treballant en paral·lel. L'objectiu principal del JCOP és treballar en comú per reduir duplicitat i, al mateix temps, facilitar la integració i futur manteniment dels experiments. D'aquesta manera, components sovint utilitzats per al control de plantes industrials com PLCs, 'fieldbuses', el protocol OPC o SCADA han estat instaurats i són utilitzats amb èxit als experiments. Al mateix temps, el JCOP combina els productes comercials existents amb elements hardware i software específicament creats per al seu ús dins el món del control d'experiments de física d'altes energies. Aquest és el cas del software anomenat FSM (Finite State Machine).El modelatge i integració dels molts dispositius distribuïts que coexisteixen al DCS es realitza utilitzant la FSM. D'aquesta manera, el control s'estableix mitjançant entitats software distribuïdes, autònomes i cooperatives que són organitzades jeràrquicament i segueixen una lògica de màquines finites d'estats. L'eina FSM combina dues tecnologies principals: SMI++ (State Manager Interface toolkit) i un producte SCADA comercial. SMI++ (escrit en C++) ja ha estat utilitzat amb èxit en dos experiments de física d'altes energies anteriors a ATLAS proveint la següent funcionalitat: un llenguatge orientat a objectes, una lògica de màquina finita d'estats, un sistema expert basat en regles, i un protocol de comunicació independent de la plataforma utilitzada. Aquesta funcionalitat s'aplica doncs a tots els nivells d'operació/abstracció de l'experiment (ex. des d'una vàlvula d'un sistema de refrigeració fins a tot ATLAS). Així i, basant-se en regles establertes i acurades inter-connexions que organitzen els objectes jeràrquicament, s'assoleix l'automatització global de l'experiment.Aquesta tesi presenta la integració del ATLAS DCS dins una jerarquia de control seguint la segmentació natural de l'experiment en sub-detectors i sub-sistemes. La integració final dels molts sistemes que formen el DCS a ATLAS inclou tasques com: l'organització del software de control, la identificació de models dels processos, l'automatització de processos, la detecció d'errors, la sincronització amb DAQ, i la interfície amb l'usuari.Tot i que l'experiència adquirida al passat amb la utilització de SMI++ és bon punt de partença per al disseny de la jerarquia de control de ATLAS, nous requisits han aparegut degut a la complexitat i mida de l'experiment. Així, l'escalabilitat de l'eina ha estat estudiada per afrontar el fet de què la jerarquia de control final a ATLAS serà centenars de cops més gran que cap dels dos antecedents existents. Una solució comú per a tots els sistemes que formen el DCS ha estat creada amb el principal objectiu d'assolir una certa homogeneïtat entre les diferents parts. Així, una arquitectura basada en 3 nivells funcionals organitza els sistemes pertanyents als 12 sub-detectors de l'experiment. Seguint aquesta arquitectura, les diferents funcions i parts del DCS han estat modelades amb una 'granularitat' similar entre sub-detectors, la qual cosa, ens ha portat a l'obtenció de jerarquies de control isomorfes.La detecció, monitorització i diagnòstic d'errors és una part essencial per l'operació i coordinació de tasques de qualsevol experiment de física d'altes energies o planta industrial. La presència d'errors al sistema distorsiona l'operació i pot invalidar els càlculs realitzats per a la recerca de física. Per aquest motiu, una estratègia estàndard i una interfície estàndard amb l'usuari han estat definides donant èmfasi a la ràpida detecció, monitorització i diagnòstic dels errors basant-se en un mecanisme dinàmic de tractament d'errors. Aquests nou mecanisme es basa en la creació de dos camins de comunicació (o jerarquies paral·leles) que, al mateix temps que tracten els errors, donen una descripció més clara de les condicions d'operació de l'experiment. Així, un dels camins de comunicació està poblat per objectes dedicats a la detecció i anàlisi dels errors, mentre a l'altre, els objectes comanden l'operació de l'experiment. Aquests dos camins paral·lels cooperen i contenen la lògica que descriu l'automatització de processos al DCS. Així, els diferents objectes segueixen unes màquines finites de estats preestablertes per ATLAS que faciliten la comprensió i futur desenvolupament del DCS. A més, el fet de què l'estratègia proposada agrupi i resumi els errors d'una forma jeràrquica, facilita notablement l'anàlisi d'aquests errors en un sistema de la mida d'ATLAS. L'estratègia proposada, modular i distribuïda, ha estat validada mitjançant nombrosos tests. El resultat ha estat una substancial millora en la funcionalitat mantenint, al mateix temps, unacorrecta gestió dels recursos existents. Aquesta estratègia ha estat implementada amb èxit i constitueix l'estàndard emprat a ATLAS per a la creació de la jerarquia de control.Durant l'operació de l'experiment, el DCS s'ha de sincronitzar amb els sistema DAQ a càrrec del procés de presa de dades per als conseqüents estudis de física. L'automatització de processos d'ambdós sistemes, DAQ i DCS, segueixen una lògica similar basada en una jerarquia de màquines finites d'estats (similituds i diferències han estat identificades i presentades). Tot i això, la interacció entre els dos principals sistemes integradors de ATLAS ha estat fins el moment limitada, però aproximant-se a l'inici d'operacions, esdevé cada dia més important. Així, un mecanisme de sincronització que estableix connexions entre els diferents segments dels sistema DAQ i la jerarquia de control del DCS ha estat desenvolupat. La solució adoptada insereix automàticament objectes SMI++ dins la jerarquia de control del DCS. Aquests objectes permeten a les aplicacions del DAQ comandar diferents seccions del DCS d'una forma independent i transparent. Al mateix temps, el mecanisme no permet prendre dades per física quan una part del detector funciona d'una forma incorrecta evitant així l'extracció d'informació corrupta mentre l'experiment torna a un estat segur. Un prototip que assoleix la sincronització dels dos sistemes ha estat implementat i validat, i ja està llest per a ésser utilitzat durant la integració dels sub-detectors.Finalment, la interfície situada a la sala de control entre el DCS i l'usuari ha estat implementada. D'aquesta manera, es completa la integració de les diferents parts del DCS. Els principals reptes solventats durant les fases de disseny i desenvolupament de la interfície han estat: permetre a l'operador controlar un procés de la mida de ATLAS, permetre la integració i manteniment dels molts diferents 'displays' d'operador que pertanyen als diferents sub-detectors i, donar la possibilitat a l'operador de navegar ràpidament entre les diferents parts del DCS. Aquestes qüestions han estat solventades combinant la funcionalitat del sistema SCADA amb la eina FSM. La jerarquia de control es utilitzada per la interfície per estructurar d'una forma intuïtiva els diferent 'displays' que formen el DCS. Llavors, tenint en compte que cada node de la jerarquia representa una porció susceptible de ser controlada independentment, hem assignat a cada node un 'display' que conté la informació del seu nivell d'abstracció dins la jerarquia. Tota la funcionalitat representada dins la jerarquia de control és accessible dins els 'displays' SCADA mitjançant dispositius gràfics especialment implementats. Utilitzant aquest dispositius gràfics, per una banda possibilitem que els diferents 'displays' s'assimilin en la seva forma, i així, facilitem la comprensió i utilització de la interfície per part del usuari. Per altra banda, els estats, transicions i accions que han estat definits per els objectes SMI++ són fàcilment visibles dins la interfície. D'aquesta manera, en cas de una possible evolució del DCS, el desenvolupament necessari per adequar la interfície es redueix notablement. A més, un mecanisme de navegació ha estat desenvolupat dins la interfície fent accessible a l'operador ràpidament qualsevol sistema dins la jerarquia. La jerarquia paral·lela dedicada al tractament d'errors també és utilitzada dins la interfície per filtrar errors i accedir als sistemes en problemes de una manera eficient. La interfície és suficientment modular i flexible, permet ésser utilitzada en nous escenaris d'operació, resol les necessitats de diferents tipus d'usuaris i facilita el manteniment durant la llarga vida de l'experiment que es preveu fins a 20 anys. La consola està sent utilitzada des de ja fa uns mesos i actualment totes les jerarquies dels sub-detectors estan sent integrades. / Hierarchical Control of the ATLAS experimentÀlex Barriuso PoyControl systems at High Energy Physics (HEP) experiments are becoming increasingly complex mainly due to the size, complexity and data volume associated to the front-end instrumentation. In particular, this becomes visible for the ATLAS experiment at the LHC accelerator at CERN. ATLAS will be the largest particle detector ever built, result of an international collaboration of more than 150 institutes. The experiment is composed of 9 different specialized sub-detectors that perform different tasks and have different requirements for operation. The system in charge of the safe and coherent operation of the whole experiment is called Detector Control System (DCS).This thesis presents the integration of the ATLAS DCS into a global control tree following the natural segmentation of the experiment into sub-detectors and smaller sub-systems. The integration of the many different systems composing the DCS includes issues such as: back-end organization, process model identification, fault detection, synchronization with external systems, automation of processes and supervisory control.Distributed control modeling is applied to the widely distributed devices that coexist in ATLAS. Thus, control is achieved by means of many distributed, autonomous and co-operative entities that are hierarchically organized and follow a finite-state machine logic.The key to integration of these systems lies in the so called Finite State Machine tool (FSM), which is based on two main enabling technologies: a SCADA product, and the State Manager Interface (SMI++) toolkit. The SMI++ toolkit has been already used with success in two previous HEP experiments providing functionality such as: an object-oriented language, a finite-state machine logic, an interface to develop expert systems, and a platform-independent communication protocol. This functionality is then used at all levels of the experiment operation process, ranging from the overall supervision down to device integration, enabling the overall sequencing and automation of the experiment.Although the experience gained in the past is an important input for the design of the detector's control hierarchy, further requirements arose due to the complexity and size of ATLAS. In total, around 200.000 channels will be supervised by the DCS and the final control tree will be hundreds of times bigger than any of the antecedents. Thus, in order to apply a hierarchical control model to the ATLAS DCS, a common approach has been proposed to ensure homogeneity between the large-scale distributed software ensembles of sub-detectors. A standard architecture and a human interface have been defined with emphasis on the early detection, monitoring and diagnosis of faults based on a dynamic fault-data mechanism. This mechanism relies on two parallel communication paths that manage the faults while providing a clear description of the detector conditions. The DCS information is split and handled by different types of SMI++ objects; whilst one path of objects manages the operational mode of the system, the other is dedicated to handle eventual faults. The proposed strategy has been validatedthrough many different tests with positive results in both functionality and performance. This strategy has been successfully implemented and constitutes the ATLAS standard to build the global control tree.During the operation of the experiment, the DCS, responsible for the detector operation, must be synchronized with the data acquisition system which is in charge of the physics data taking process. The interaction between both systems has so far been limited, but becomes increasingly important as the detector nears completion. A prototype implementation, ready to be used during the sub-detector integration, has achieved data reconciliation by mapping the different segments of the data acquisition system into the DCS control tree. The adopted solution allows the data acquisition control applications to command different DCS sections independently and prevents incorrect physics data taking caused by a failure in a detector part.Finally, the human-machine interface presents and controls the DCS data in the ATLAS control room. The main challenges faced during the design and development phases were: how to support the operator in controlling this large system, how to maintain integration across many displays, and how to provide an effective navigation. These issues have been solved by combining the functionalities provided by both, the SCADA product and the FSM tool. The control hierarchy provides an intuitive structure for the organization of many different displays that are needed for the visualization of the experiment conditions. Each node in the tree represents a workspace that contains the functional information associated with its abstraction level within the hierarchy. By means of an effective navigation, any workspace of the control tree is accessible by the operator or detector expert within a common human interface layout. The interface is modular and flexible enough to be accommodated to new operational scenarios, fulfil the necessities of the different kind of users and facilitate the maintenance during the long lifetime of the detector of up to 20 years. The interface is in use since several months, and the sub-detector's control hierarchies, together with their associated displays, are currently being integrated into the common human-machine interface.
62

How to Design the Organizational Structure of An Internet Firm Under Considering Its Environment and Strategy¡VAtlas Company As an Example

Su, Chun-Jung 08 July 2002 (has links)
In the 21 Centuries after Y2K millennium bug scare, the Internet industry hottest issue is Dot-com bubble. Dot-com Company is based on Internet platform for all kind business transaction like developing, marketing, selling and service providing. During the rapidly new technology and truncated productivity cycle, the Internet business is much differ from traditional businesses, it must confront a market with fluctuation and uncertainty in every aspect. An Internet company that will survive and thrive must extremely organize their company very well for turn into Internet plays. This research is based on the reports and documents that had been announced, study the theories and method of the environment, strategy, structure, then acquire a perfect solution. Proceeding research with the physical company as an individual case, and identify the possibility of the structure established, finally conclude the study and provide a solution to any company that is in the same field. After the solid study, this research comes out following conclusions: 1.While organizing a business enterprise¡¦s structure, it must consider environment and strategy simultaneously. 2.The development of the business enterprise, certainly affected by environment but when the environments impact the business, business must adjust the structure to respond to the environments quickly. 3.No matter what kind of structure that business enterprise used,organizational design should be flexible and responsive. 4.Strategy and structure are the most import to a business enterprise, a business enterprise is hardly to resist or change the environments, but it can adjust itself to be following the trend.
63

Predicting Femoral Geometry from Anatomical Features

Grondin Lazazzera, Jerome 30 April 2014 (has links)
Knee replacement surgery is a common orthopaedic procedure that greatly benefits from a three-dimensional geometric representation of a patient's knee bone obtained from MR or CT data. The use of these image modalities pose the following challenges: (i) high imaging cost; (ii) long wait times; (iii) limited availability and (iv) in the latter, large exposure to ionizing radiation. Traditional approaches based on planar X-ray radiography are significantly less prone to these issues; however, they only provide two-dimensional information. This work presents a proof of concept study for generating patient-specific femoral bone shapes from a statistical shape atlas using anatomical features acquired from calibrated X-ray radiographs. Our hypothesis was: three-dimensional geometry can be reconstructed, within 2 millimeters RMS, by identifying features on two calibrated radiographs. We illustrate the feasibility of our approach with regards to acquiring features and the viability of reconstructing patient-specific bony anatomy. A set of reliable and relevant features is identified for which an acquisition protocol and user-interface was devised to minimize inter-observer variability. Both the data and methods used to construct the atlas are discussed as well generating shapes from features. The reconstructions accuracy was comparable to, albeit lower than, competing approaches that rely on two-dimensional bony contours. / Thesis (Master, Computing) -- Queen's University, 2014-04-29 21:53:10.809
64

Vegetation und Weidenutzung im Westlichen Hohen Atlas (Marokko) : eine Nachhaltigkeitsbewertung aus geobotanischer Sicht ; mit 30 Tabellen und 14 Photos im Text und auf 4 Beilagen sowie 8 Anhängen /

Culmsee, Heike. January 2004 (has links) (PDF)
Univ., Diss.--Freiburg (Breisgau), 2004.
65

A novel approach to modeling the effects of radiation in Gallium-Arsenide solar cells using Silvaco's atlas software /

Crespin, Aaron L. January 2004 (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, Sept. 2004. / Thesis advisor(s): Sherif Michael. Includes bibliographical references (p. 65-66). Also available online.
66

Entwicklung eines Pixelchips für das ATLAS-Experiment am large hadron collider am CERN

Meuser, Stefan. January 2002 (has links) (PDF)
Universiẗat, Diss., 2001--Bonn.
67

Der ATLAS-Pixelsensor der State-of-the-art-Pixelsensor für teilchenphysikalische Anwendungen mit extrem hohen Strahlungsfeldern /

Hügging, Fabian Georg. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Dortmund.
68

Etude géomorphologique du Tell oriental algérien de Collo à la frontière tunisienne

Marre, Alain, January 1988 (has links)
Th.--Géogr. phys.--Aix-Marseille 2, 1987.
69

A search for Higgs-portal dark matter and new phenomena with monojet signatures in pp collisions at √s = 8 TeV

Pearce, James D. 21 December 2015 (has links)
A search for new phenomena in final states with one or more energetic jets and large missing transverse momentum, ETmissT, is presented. An integrated luminosity of 20 fb-1 is collected from √s = 8 TeV pp collisions at the LHC with the ATLAS detector during 2012 operations. A selection criteria is imposed requiring events to have monojet signatures, with ETmissT > 350 GeV and no identified leptons. Standard Model backgrounds and systematics uncertainties are estimated using a maximum likelihood procedure. The number of events passing this selection criteria is in good agreement with Standard Model expectations. These events are then divided up into three orthogonal signal regions based on the outputs of two Random Forest classifiers trained to classify invisible decays of the Higgs boson produced through the vector boson fusion and Higgs-strahlung production modes. These results are then interpreted in terms of three different Higgs-portal models and translated into upper limits on WIMP-nucleon cross-sections for comparison with direct detection experiments. / Graduate
70

Measurement of dijet production at √s = 7 TeV with the ATLAS detector

Jones, Graham January 2011 (has links)
A measurement using the ATLAS detector has been made of the fraction of events in proton-proton collisions at √s = 7 TeV that do not contain additional jets in the rapidity region bounded by a di-jet system. This provided a strong test of perturbative QCD in the new energy regime of the Large Hadron Collider. Additional measurements have been made of the mean jet multiplicity in the rapidity bounded region and using a variety of different event selections. These observation were compared to recent next to leading order dijet predictions produced by POWHEG and a variety of leading order generators.

Page generated in 0.017 seconds