• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 15
  • 11
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heavy Metal ATPases from Archaeabacteria to Plants

Orofino, Maria J 03 May 2006 (has links)
PIB-ATPases are membrane proteins that transport heavy metal ions across biological membranes upon ATP-hydrolysis. These enzymes contribute to metal homeostasis in archaeal, prokaryotic and eukaryotic cells. Typically, most PIB-ATPases have eight transmembrane segments, one or more metal binding domains in the cytoplasmic N-terminal region and a series of amino acids conserved in all the members of this family. By sequence homology analysis, the metal specificity for most ATPases has been predicted. Here, we report studies on PIB-ATPases from different organisms. The first part of this work focuses in a group of ATPases from Arabidopsis thaliana plants. Transcription levels of HMA3, 4 and 8 were analyzed in different plant organs and in seedlings upon metal exposure. Tissue specificity was studied for HMA8 by generation of transgenic plants carrying a reporter gene downstream its promoter region. Attempts to determine metal specificity of proteins expressed in yeast cells were performed. Finally, in order to study the effects of removing the genes products from the plants, HMA4 and 8 mutant plants were identified. The second part describes a novel Pb-transport ATPase from a thermophilic archaeabacterium, Aeropyrum pernix. This enzyme is predicted to have only six transmembrane segments, no regulatory metal binding domains and unusual metal specificity. PbTP was cloned, expressed in Escherichia coli and partially purified. The enzyme retained its thermophilicity characteristics when isolated from its native lipid environment. The metal dependent ATPase activity was determined in the presence of different metals at 75ºC. The enzyme was highly activated by Pb2+ (Vmax: 23.6 µmol Pi/mg/h) and to a lesser extent by Zn2+, Hg2+ and Cd2+. Lead interacts with PbTP with high apparent affinity (K1/2: 4.6 µM). The enzymatic ATP hydrolysis was independent of cysteine or glutathione, suggesting direct interaction of the metal ions with the transmembrane transport sites.
2

Atypical P-type ATPases, CtpE and CtpF from Mycobacteria tuberculosis

Kocabas, Evren 16 July 2013 (has links)
"Mycobacterium tuberculosis causes tuberculosis, one of the most life-threatening diseases of all time. It infects the host macrophages and survives in its phagosome. The host phagosome is a very hostile environment where M. tuberculosis copes with high concentration of transition metals (Zn2+, Cu2+), low levels of others (Mn2+, Fe2+) and acidic pH. P-ATPases are membrane proteins that transport various ions against their electrochemical gradients utilizing the energy of ATP hydrolysis. Based on their primary sequences; seven of the twelve mycobacterial ATPases are classified as putative heavy metal transporters and a K+-ATPase, while the substrate of four (CtpE, CtpF, CtpH and CtpI) remains unknown. Consistent with their membrane topology and conserved amino acids, CtpE and CtpF are possibly P2 or P3-ATPases that transport alkali metals or protons. We examined the cellular roles of orthologous CtpE and CtpF in M. smegmatis, a non-pathogenic model organism. We hypothesized that these novel P- ATPases play an important role in transporting alkali metals and/or protons. We analyzed growth fitness of strains carrying mutations of the coding gens of these enzymes, in presence of various metals and different pHs, as well as the gene expression levels under different stress conditions. We observed that the M. smegmatis mutant strains, lacking of CtpF or CtpE, are sensitive to high concentrations (mM) of Mn2+. Furthermore, CtpE mutant is sensitive to alkali pH. Our results indicate that CtpE and CtpF might be an Mn2+ or H+-ATPase that are required for cell’s homeostasis sustainability."
3

FixI and FixI2: Homologous proteins with unique functions in Sinorhizobium meliloti

Collins, Jessica M. 19 March 2014 (has links)
Cu+-ATPases are transmembrane enzymes that couple the efflux of cytoplasmic Cu+ to the hydrolysis of ATP. It is well established that Cu+-ATPases control cytoplasmic Cu+ levels. However, bacterial genomes, particularly those of symbiotic/pathogenic organisms, contain multiple copies of genes encoding Cu+-ATPases, challenging the idea of a singular role for these enzymes. Our lab has demonstrated that one of the two Cu+-ATPases in Pseudomonas aeruginosa, a FixI-type ATPase, has an alternative role, most likely Cu+ loading of cytochrome c oxidase (Cox). To further study alternative roles of Cu+-ATPases, we study the symbiont Sinorhizobium meliloti. Rhizobia are soil-dwelling bacteria that interact with legumes, forming plant root nodules that actively fix N2. The S. meliloti genome contains five Cu+-ATPases, two of which are FixI-type. Both of these enzymes, termed FixI1 and FixI2, are downstream of Cox operons. We hypothesized that the presence of multiple FixI-type ATPases was not an example of redundancy, but rather is an evolutionary adaptation that allows rhizobia to survive under the wide variety of adverse conditions faced during early infection and establishment of symbiosis. Towards this goal, this work focused on examining the effects of mutation of each ATPase on both free-living bacteria and on the ability of rhizobia to establish an effective symbiosis with its host legume. Each of these mutants presents a different phenotype at varying points of the nodulation process, and only the fixI2 mutation produces a respiratory-deficient phenotype during aerobic growth. These results are consistent with our hypothesis that the two proteins have non-redundant physiological functions. Understanding the factors that contribute to an effective symbiosis is beneficial, since N2 fixation in legumes is important to both agriculture and industry.
4

Regulation of the calcium transport atpase of rat heart sarcoplasmic reticulum

Mahey, Rajesh January 1986 (has links)
The sarcoplasmic reticulum Ca²⁺ -pumping ATPase is the primary system responsible for the removal of calcium from the sarcoplasm during relaxation of skeletal and cardiac muscles. Since the rat heart SR is used frequently in our laboratory to study the Ca²⁺ -transport defects in disease states, the Ca²⁺ - ATPase activity of this system was characterized. Calmodulin (CaM) and cAMP-dependent protein kinase (cAMP-PK) are known to regulate the dog cardiac SR Ca²⁺ -pump. The effects of these regulators on the rat heart SR Ca²⁺ -pump were studied. Studies were also carried out to investigate the effects of Triton X-100 on SR Ca²⁺ -ATPase activity and the regulation of this activity by CaM. The rat heart SR Ca²⁺-ATPase was stimulated in a concentration-dependent manner by both Ca²⁺ and Mg²⁺ in the complete absence of the other cation. Magnesium produced a concentration-dependent increase in the basal ATPase activity without affecting the maximal ATPase activity. This appeared to result in a gradual disappearance of the Ca²⁺ dependency of the ATPase activity. Addition of 100µM CDTA (trans-1,2-diaminocyclo- hexane-N,N,N',N'-tetraacetic acid), in the absence of added magnesium, produced no effect on Ca²⁺ stimulation of ATPase activity. The results appear to indicate the presence of a low affinity non-specific divalent cation-stimulated ATPase. At a constant Mg: ATP ratio, ATP simulated the SR Ca²⁺-ATPase activity in a concentration-dependent manner. Double-reciprocal plots of the data suggest that the true substrate for rat heart SR Ca²⁺-ATPase may be ATP and not Mg.ATP. In the crude SR, CaM did not stimulate total or Ca²⁺-stimulated ATPase activity over a range of Ca²⁺ and Mg²⁺ concentrations. CaM also failed to stimulate membrane phosphorylation over a range of Mg²⁺ concentrations. Furthermore, CaM did not produce a significant effect on calcium transport into SR vesicles. The catalytic subunit of cAMP-dependent protein kinase was also ineffective in stimulating membrane phosphorylation and Ca²⁺ -ATPase activity. Two CaM antagonists, trifluperazine and compound 48/80, did not affect the rat heart SR ATPase activity. The ATPase activity in Triton-washed SR membranes appeared to be increased at low Triton concentrations. This effect was probably due to the removal of non-intrinsic proteins, leaky vesicles or altered membrane fluidity. At higher Triton X-100 concentrations, the ATPase activity was lost, probably due to loss of the phospholipid environment. When SR membranes phosphorylated under conditions similar to those used for the ATPase assay were analysed by SDS-PAGE (sodium dodecyl sulphate-polyacrylamide gel electrophoresis) followed by autoradiography, a single phosphorylated protein of 7,500-9,000 dalton was observed. This protein may represent the monomeric form of phospholamban. CaM, however, appeared to have no effect on the phosphorylation of this 7,500-9,000 dalton protein in either untreated or Tritan-washed SR membranes. It is speculated that the rat heart SR contains tightly bound CaM which cannot be removed by treatment with Triton X-100. / Pharmaceutical Sciences, Faculty of / Graduate
5

P-type ATPases in Mycobacterium tuberculosis

Ananthakrishnan, Shilpa 10 June 2009 (has links)
"Tuberculosis is a deadly disease caused by bacteria of the genus Mycobacterium. One-third of the world’s population is infected with Mycobacterium tuberculosis. Two million these deaths occur each year in immunocompromised AIDS patients. M. tuberculosis has co-evolved with humans for many thousands of years. The bacillus has developed tactics to overcome the immune defense system and multiply in the macrophage. At the interface of the host and pathogen interactions, there is an interchange of metals and electrolytes. The host on one hand reduces the availability of metals essential for pathogen survival, like manganese and iron, in the macrophage and increases potassium ions which reduces pH in the phagolysosome. The host also generates Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS), to create toxic affects through interactions with metals and metalloproteins. M. tuberculosis copes with the hostile environment in the macrophage by preventing the acidification of the phagolysosome, secreting antioxidant enzymes such as alkylhydroperoxidase (AhpF) and peroxiredoxin (AhpC), superoxide dismutase, SodA and SodC, and catalase KatG through the SecA system. M. tuberculosis contains 28 metal transporters, among them there are 12 unique P-type ATPases. This is an unusually high number of P-type ATPases in an organism. These ATPases transport several monovalent and divalent metals (Cu+, Cu2+, Ag+, Zn2+, Na+, K+, Ca2+, Cd2+, Pb2+, Mn2+, Mg2+, and Co2+) across biological membranes, using energy from ATP hydrolysis. Our analysis has revealed that these P-type ATPases have homologs in other intracellular symbiotic/pathogenic bacteria and certain chemolithotrophic archaea and bacteria. A corelation can hence be drawn among these pumps and the capability of surviving in noxious environments and coping with adverse redox conditions. Possible substrates were identified by determining the consensus sequences in different helices of these ATPases. However, out of the 12 P-type ATPases confirmed, transported substrate could be postulated for four of these proteins; CtpA, CtpB, CtpV and KdpB. Using bioinformatic approaches we have characterized the possible genetic environment of these genes. The transmembrane regions were analyzed for consensus sequences and the N-terminals and C-terminals were scrutinized for metal binding domains, and we were able to categorize these ATPases into P1 type and P2 type ATPases. In an attempt to determine the substrate specificity, two of these ATPases (CtpC and ctpG) were cloned and transformed into Escherichia coli cells. Cells expressing CtpC were grown in different concentrations of metals and pHs. In these experiments CtpC was found to show an interaction with copper and cadmium. Pure protein was obtained by His-tag purification and para-Nitro Phenol Phosphatase (pNPPase) assay was performed with different metals, it was found that copper and zinc activated the phosphatase activity of the enzyme; and cobalt and manganese were inhibitory. Inhibition of the pNPP assay could mean that there would be activation in the ATPase assay, meaning that cobalt and manganese could be possible substrates to this enzyme. "
6

Synthetic studies of plakortones. / CUHK electronic theses & dissertations collection

January 2001 (has links)
Lee Hing Ken. / "November 2001." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (p. 154-159). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
7

Structural and Functional Characterization of Clp Chaperones and Proteases in the Human Malaria Parasite Plasmodium falciparum

Pow, Andre 26 November 2012 (has links)
The Clp chaperones and proteases play a pivotal role in maintaining cellular homeostasis. They are highly conserved across prokaryotes and can also be found in the mitochondria of eukaryotes and chloroplast of plants. For my thesis, I provide an analysis of the Clp chaperones and protease in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which I term PfClpB1, PfClpB2, PfClpC, and PfClpM. One PfClpP, the proteolytic protomer, and one PfClpR, an inactive isoform, were also identified. All proteins, with the exception of PfClpB2, were found to be localized to the apicoplast, a non-photosynthetic relic plastid in P. falciparum. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by various techniques. Through X-ray crystallography, PfClpP assumed a compacted tetradecamer structure similar to that observed for other ClpPs. My data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.
8

Structural and Functional Characterization of Clp Chaperones and Proteases in the Human Malaria Parasite Plasmodium falciparum

Pow, Andre 26 November 2012 (has links)
The Clp chaperones and proteases play a pivotal role in maintaining cellular homeostasis. They are highly conserved across prokaryotes and can also be found in the mitochondria of eukaryotes and chloroplast of plants. For my thesis, I provide an analysis of the Clp chaperones and protease in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which I term PfClpB1, PfClpB2, PfClpC, and PfClpM. One PfClpP, the proteolytic protomer, and one PfClpR, an inactive isoform, were also identified. All proteins, with the exception of PfClpB2, were found to be localized to the apicoplast, a non-photosynthetic relic plastid in P. falciparum. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by various techniques. Through X-ray crystallography, PfClpP assumed a compacted tetradecamer structure similar to that observed for other ClpPs. My data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.
9

Regulation of the Atp2b2 gene /

Silverstein, Robert S., January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 124-135).
10

Studies on the reaction cycle of the calcium transport atpase from human erythrocytes

Allen, Bruce Gordon January 1985 (has links)
The plasma membrane calcium-transport ATPase plays a major role in maintaining the low cytosolic calcium concentrations required for normal cellular function. Calcium, magnesium, calmodulin and lanthanum have been shown to alter the activity of the calcium-stimulated, magnesium-dependent ATPase activity in human erythrocytes. In an attempt to examine the reaction sequence of the (Ca²⁺ + Mg²⁺)-ATPase, the effects of these agents on the kinetics of calcium dependent phosphoprotein formation, the first step in the partial reaction sequence, were examined. Calmo-dulin-depleted erythrocyte membranes were prepared by hypotonic lysis in the presence of EDTA, according to the method of Carafoli et al (1980). Calcium-dependent formation of the phosphorylated intermediate was biphasic; the high calcium-affinity component was associated with low levels of E.Ca.P and a shallow response to changing calcium concentrations, whereas in the region of the low calcium-affinity component, E.Ca.P rose sharply in response to increasing calcium concentrations. The low affinity component of E.Ca.P lies in the range of calcium concentrations which inhibit (Ca²⁺ + Mg²⁺)-ATPase activity. When analyzed on LiDS acid PAGE, both components of calcium-dependent phosphoprotein formation were due to hydroxylamine-sensitive phosphorylation of a 135,000-145,000 dalton protein. Hence, the low calcium-affinity component of phosphoprotein formation and calcium-dependent inhibition of (Ca²⁺ + Mg²⁺)-ATPase activity were likely due to calcium-inhibition of dephosphorylation. Kinetic studies of calcium-dependent phosphoprotein formation, at two different calcium concentrations (1.0 μM, 0.4 mM), indicated that a steady-state was reached much sooner at higher calcium concentrations. Lanthanum, which is known to block dephosphorylation of the intermediate complex, increased both the apparent rate of formation and the steady-state level of the phosphorylated intermediate. Calmodulin, which has previously been shown to increase both the maximum velocity and the calcium affinity of the (Ca²⁺ + Mg²⁺)-ATPase, did not affect either calcium-dependent inhibition of (Ca²⁺ + Mg²⁺ )-ATPase activity or the biphasic nature of calcium-dependent phosphoprotein formation. At low calcium concentrations, calmodulin increased the apparent rate of phosphoprotein formation, whereas at higher calcium concentrations (0.4 mM) calmodulin reduced the steady-state level of the phosphoprotein; the apparent rate of formation was unaffected. In the presence of lanthanum, calmodulin increased both the apparent rate of formation and steady-state level of the phosphoprotein, suggesting that the true rate of formation was increased by calmodulin at higher calcium concentrations, but this was normally hidden by a simultaneous increase in the rate of dephosphorylation. Removal of endogenous magnesium, using trans-1,2-diamino-cyclohexane tetraacetic acid (CDTA) did not alter the calcium sensitivity or rate of formation of the phosphorylated intermediate, however turnover of the intermediate was markedly reduced. In the absence of free magnesium, both the velocity and calcium sensitivity of the (Ca²⁺ + Mg²⁺)-ATPase were also found to be lower. The low calcium-affinity component of calcium-dependent phosphoprotein formation, which Schatzmann (1982) has attributed to an action of calcium at a "magnesium-specific" site, was not affected by magnesium concentrations as high as 1 mM. Furthermore, this phosphoprotein could be dephosphorylated along either the forward or reverse pathways. These results indicate that the transformation from E₁.Ca.P to E₂.Ca.P may not be the site of the calcium-dependent inhibition of dephosphorylation. Calmodulin-depleted membrane fragments were prepared from the erythrocytes of cystic fibrosis patients as well as age- and sex-matched controls. Under conditions in which dephosphoryla-tion is inhibited, phosphoprotein formation and (Ca²⁺ + Mg²⁺)-ATPase activities were determined. Both (Ca²⁺ + Mg²⁺)-ATPase activity and phoshoprotein formation were found to be significantly reduced in the preparations derived from patients with cystic fibrosis. Turnover of the phosphorylated intermediate did not differ significantly between the two groups. A reduction in (Ca²⁺ + Mg²⁺)-ATPase activity and phosphoprotein formation suggests that there may be fewer active calcium-pumping sites in the erythrocyte membranes of cystic fibrosis patients compared to normal subjects. / Pharmaceutical Sciences, Faculty of / Graduate

Page generated in 0.0385 seconds