• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 248
  • 133
  • 42
  • 36
  • 36
  • 10
  • 10
  • 7
  • 7
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 648
  • 84
  • 60
  • 59
  • 55
  • 46
  • 40
  • 36
  • 35
  • 33
  • 32
  • 32
  • 32
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Growth Attenuation, Sterilization, and Cochlear Implants: Ethical, Legal and Social Themes

Mercadante, Jenna Nicole 31 January 2012 (has links)
No description available.
142

Evaluation of Contaminant Attenuation in a Mining Impacted Aquifer, Stark County, Ohio

Adams, Heather R. January 2015 (has links)
No description available.
143

Characterization of the in vitro interaction between bacillus subtilis glyQS T Box leader RNA and tRNA(Gly)

Yousef, Mary Roneh 06 January 2005 (has links)
No description available.
144

MRI-Based Attenuation Correction for PET Reconstruction

Steinberg, Jeffrey 12 September 2008 (has links)
No description available.
145

Attenuation Correction in Positron Emission Tomography Using Single Photon Transmission Measurement

Dekemp, Robert A. 09 1900 (has links)
Accurate attenuation correction is essential for quantitative positron emission tomography. Typically, this correction is based on a coincidence transmission measurement using an external source of positron emitter, which is positioned close to the detectors. This technique suffers from poor statistical quality and high dead time losses, especially with a high transmission source strength. We have proposed and tested the use of single photon transmission measurement with a rotating rod source, to measure the attenuation correction factors (ACFs). The singles projections are resampled into the coincidence geometry using the detector positions and the r,)d source location. A nonparalyzable dead time correction algorithm was developed for the block detectors used in the McMaster PET scanner. Transaxial resolution is approximately 6 mm, which is comparable to emission scanning performance. Axial resolution is about 25 mm, with only crude source collimation. ACFs are underestimated by approximately 10% due to increased crossplane scatter, compared to coincidence transmission scanning. Effective source collimation is necessary to obtain suitable axial resolution and improved accuracy. The response of the correction factors to object density is linear to within 15%, when comparing singles transmission measurement to current coincidence transmission measurement. The major advantage of using singles transmission measurement IS a dramatically increased count rate. A factor of seven increase in count rate over coincidence scanning is possible with a 2 mCi transmission rod source. There are no randoms counted in singles transmission scans, which makes the measured count rate nearly linearly proportional with source activity. Singles detector dead time is approximately 6% in the detectors opposite a 2 mCi rod source. Present hardware and software precludes the application of this technique in a clinical environment. We anticipate that real time acquisition of detector singles can reduce the transmission scanning time to under 2 minutes, and produce attenuation coefficient images with under 2% noise. This is a significant improvement compared to the current coincidence transmission technique. / Thesis / Master of Science (MS)
146

Output Feedback Stabilization for a Class of Multi-Variable Bilinear Stochastic Systems with Stochastic Coupling Attenuation

Zhang, Qichun, Zhou, J., Wang, H., Chai, T. 03 October 2019 (has links)
Yes / In this technical note, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
147

Origin of Uranium Mineralization at Coles Hill Virginia (USA) and its Natural Attenuation within an Oxidizing Rock-Soil-Ground Water System

Jerden, James L. 04 October 2001 (has links)
Development of a scientific basis for management of uranium bearing wastes and contaminants requires information from natural geologic systems. The following study of the Coles Hill uranium deposit and associated weathered zone constrains processes leading to the natural attenuation of uranium within an oxidizing, fluid rich environment typical of the eastern US. At the Coles Hill deposit fracture hosted, primary U(IV) bearing mineral assemblages formed during hydrothermal activity associated with Mesozoic faulting. The most abundant ore assemblage consists of coffinite and apatite, but uraninite-zeolite and uraninite-calcite assemblages are also present. Within the shallow bedrock there is a uranium redox transition where alteration of U(IV) minerals has produced secondary uranium minerals. Geochemical data suggests that the volume of rock containing this U(IV)/U(VI) transition is acting as a closed system with respect to uranium mass transport during oxidation. The dominant mechanism of uranium fixation within the oxidizing zone is the precipitation of Ba-U(VI) phosphates (meta-autunite group). Speciation and mineral stability calculations indicate that ground waters from the Coles Hill weathered zone are saturated with respect to Ba-meta-autunite and that this mineral is capable of buffering dissolved uranium concentrations to values lower than 20 parts per billion. U(VI) phosphates of the meta-autunite group are not stable in the vadose zone (soil pH ~ 4.5) at the Coles Hill site. In this zone uranium is associated with (Ba, Ca, Sr) aluminum phosphate of the crandallite group as well as with phosphate sorbed to iron oxy-hydroxide mineral coatings. Uranium leached from the vadose zone is reprecipitated as new meta-autunite minerals below the water table due to higher pH conditions of ~6.0 and relatively high activity ratios of dissolved phosphate to carbonate (e.g. log [H2PO4-/HCO3-] > -3). It is estimated that the U(VI) phosphates responsible for the natural attenuation of uranium at this site persist within the weathering zone for hundreds of thousands of years. Thus, the Coles Hill deposit represents an excellent natural laboratory for the study of uranium attenuation with potential applications for the design and implementation of cost effective remediation and containment strategies, such as soil amendments techniques and in-situ reactive barriers technologies. / Ph. D.
148

Natural Attenuation Software (NAS): Assessing Remedial Strategies and Estimating Timeframes

Mendez, Eduardo III 09 September 2008 (has links)
Natural Attenuation Software (NAS) was developed as a screening tool to estimate remediation timeframes for monitored natural attenuation (MNA) to lower groundwater contaminant concentrations to regulatory limits, and to assist in decision-making on the level of source zone treatment in conjunction with MNA using site-specific remediation objectives. In addition, NAS facilitates the combined use of MNA with engineered remedial actions (ERAs) so that the benefits of each technology can be maximized while minimizing costs of remediation. The primary expected benefit of NAS is to increase regulatory acceptance of MNA, thereby decreasing overall remediation costs. NAS is designed for application to ground-water systems consisting of porous, relatively homogeneous, saturated media, and assumes that groundwater flow is uniform and unidirectional. NAS consists of a combination of analytical and numerical solute transport models implemented in three main interactive modules to provide estimates for: (1) target source concentration required for a plume extent to contract to regulatory limits, (2) time required for NAPL contaminants in the source area to attenuate to a predetermined target source concentration, and (3) time required for a plume extent to contract to regulatory limits after source reduction. Natural attenuation processes that NAS models include advection, dispersion, sorption, non-aqueous phase liquid (NAPL) dissolution, and biodegradation. NAS determines redox zonation, and estimates and applies varied biodegradation rates from one redox zone to the next. Recently, NAS was enhanced to include petroleum hydrocarbons, chlorinated ethenes, chlorinated ethanes, chlorinated methanes, and chlorinated benzenes, or any user-defined contaminants (e.g., heavy metals, radioisotopes), and has included the capability to model co-mingled plumes. To enable comparison of remediation timeframe estimates between MNA and specific ERAs, NAS was modified to incorporate an estimation technique for timeframes associated with pump-and-treat remediation technology for comparison to, or in conjunction with, MNA. NAS also expanded analysis tools for improved performance assessment, as well as the assessment of sustainability of natural attenuation processes over time. A Department of Defense (DoD) Environmental Security Technology Certification Program (ESTCP) demonstration was undertaken to evaluate the capability of the NAS software to provide reasonable estimates of MNA cleanup timeframes in a variety of environments and sites throughout the United States. Overall, results suggest that NAS was satisfactory in meeting performance objectives set forth in the demonstration, and that because NAS is based on sound science, it can serve as an effective tool for decision-making and data analysis at a wide range of contaminated sites and is not limited to a small subset of “simple sites” because of its simplicity. At some sites, NAS-estimated timeframes were crucial for winning regulatory acceptance of MNA, with cost-benefit analyses providing estimates of savings associated with using MNA as a final remediation strategy. / Ph. D.
149

Attenuation Field Estimation Using Radio Tomography

Cooke, Corey 15 September 2011 (has links)
Radio Tomographic imaging (RTI) is an exciting new field that utilizes a sensor network of a large number of relatively simple radio nodes for inverse imaging, utilizing similar mathematical algorithms to those used in medical imaging. Previous work in this field has almost exclusively focused on device-free object location and tracking. In this thesis, the application of RTI to propagation problems will be studied-- specifically using RTI to measure the strength and location of attenuating objects in an area of interest, then using this knowledge of the shadowing present in an area for radio coverage prediction. In addition to radio coverage prediction, RTI can be used to improve the quality of RSS-based position location estimates. Because the traditional failing of RSS-based multilateration is ranging error due to attenuating objects, RTI has great potential for improving the accuracy of these estimates if shadowing objects are accounted for. In this thesis, these two problems will primarily be studied. A comparison with other inverse imaging, remote sensing, and propagation modeling techniques of interest will be given, as well as a description of the mathematical theory used for tomographic image reconstruction. Proof-of-concept of the efficacy of applying RTI to position location will be given by computer simulation, and then physical experiments with an RTI network consisting of 28 Zigbee radio sensors will be used to verify the validity of these assertions. It will be shown in this thesis that RTI does provide noticeable improvement in RSS-based position location accuracy in cluttered environments, and it produces much more accurate RSS estimates than a standard exponential path-loss model is able to provide. / Master of Science
150

Evaluation of Enhanced Bioremediation for Reductive Dechlorination of Tetrachloroethene (PCE): Microcosm Study

Wang, Felix Yuen-Yi 23 May 2000 (has links)
Laboratory microcosm experiments were conducted to assess the potential for biostimulation and bioaugmentation as source reduction measures in support of a monitored natural attenuation remedial strategy at Naval Amphibious Base (NAB) Little Creek. Previous work with laboratory microcosms conducted under simulated natural (unamended) conditions has demonstrated that indigenous dehalorespirators were capable of partial dechlorination of tetrachloroethene (PCE) to cis-dichloroethene (cis-DCE). This study attempts to achieve complete reductive dechlorination with amendments to static microcosms to test the hypotheses that nutrient-limited or microorganism-limited conditions exist in aquifer sediments obtained from the site. The enhanced bioremediation experiments were comprised of nutrient-amended microcosms receiving additions of electron donors, mineral medium, or anaerobic digester supernatant, and dechlorinating culture-amended microcosms were inoculated with a culture capable of transforming PCE to ethene. Reductive dechlorination in the nutrient-amended microcosms proceeded to cis-DCE over a 260-day study period, at slightly higher rates than in experiments conducted with aquifer sediments from the same location under natural conditions. Inoculation of aquifer sediments with a small amount of dechlorinating culture initiated rapid transformation of PCE to vinyl chloride (VC) by day 18 of the study. Zero-order rates of PCE dechlorination in unamended, propionate-, formate-, mineral medium-, digester supernatant-, and dechlorinating culture-amended microcosms were 0.24, 0.750, 1.30, 0.339, 0.177, and 1.75 µM/day, respectively. The results of this study suggest that an engineered biostimulation approach alone may not be as beneficial for PCE source reduction at NAB Little Creek, than bioaugmentation with competent dehalorespirators, along with the inclusion of supplemental nutrients which would be available to stimulate dechlorination activity of both indigenous and introduced microorganisms. / Master of Science

Page generated in 0.034 seconds