1 |
Fuel economy modeling of light-duty and heavy-duty vehicles, and coastdown studyAtes, Murat 03 September 2009 (has links)
Development of a fuel economy model for light-duty and heavy-duty vehicles is
part of the Texas Department of Transportation’s “Estimating Texas Motor Vehicle
Operating Costs” project. A literature review for models that could be used to predict the
fuel economy of light-duty and heavy-duty vehicles resulted in selection of coastdown
coefficients to simulate the combined effects of aerodynamic drag and tire rolling
resistance.
For light-duty vehicles, advantage can be taken of the modeling data provided by
the United States Environmental Protection Agency (EPA) for adjusting chassis
dynamometers to allow accurate determination of emissions and fuel economy so that
compliance with emissions standards and Corporate Average Fuel Economy (CAFE)
regulations can be assessed. Initially, EPA provided vehicle-specific data that were
relevant to a physics-based model of the forces at the tire-road interface. Due to some
limitations of these model parameters, EPA now provides three vehicle-specific
coefficients obtained from vehicle coastdown data. These coefficients can be related
back to the original physics-based model of the forces at the tire-road interface, but not in
a manner that allows the original modeling parameters to be extracted from the
coastdown coefficients. Nevertheless, as long as the operation of a light-duty vehicle
does not involve extreme acceleration or deceleration transients, the coefficients available
from the EPA can be used to accurately predict fuel economy.
Manufacturers of heavy-duty vehicles are not required to meet any sort of CAFE
standards, and the engines used in heavy-duty vehicles, rather than the vehicles
themselves, are tested (using an engine dynamometer) to determine compliance with
emissions standards. Therefore, EPA provides no data that could be useful for predicting
the fuel economy of heavy-duty vehicles. Therefore, it is necessary to perform heavyduty
coastdown tests in order to predict fuel economy, and use these tests to develop
vehicle-specific coefficients for the force at the tire-road interface. Given these
coefficients, the fuel economy of a heavy-duty vehicle can be calculated for any driving
schedule. The heavy-duty vehicle model developed for this project is limited to pre-2007
calendar year heavy-duty vehicles due to the adverse effects of emissions components
that were necessary to comply with emissions standards that went into effect January
2007. / text
|
2 |
Modelagem e simulação de grupo gerador diesel consumindo óleo vegetal “in natura” enriquecido com hidrogênio e oxigênio visando melhorar sua eficiência energéticaCAMPOS, Ricardo Augusto Seawright de 28 August 2015 (has links)
Submitted by Hellen Luz (hellencrisluz@gmail.com) on 2017-08-07T16:25:04Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_ModelagemSimulacaoGrupo.pdf: 8415473 bytes, checksum: 51d0bbdf612a283f4ad16654565e5eee (MD5) / Approved for entry into archive by Irvana Coutinho (irvana@ufpa.br) on 2017-08-09T13:31:01Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_ModelagemSimulacaoGrupo.pdf: 8415473 bytes, checksum: 51d0bbdf612a283f4ad16654565e5eee (MD5) / Made available in DSpace on 2017-08-09T13:31:01Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Tese_ModelagemSimulacaoGrupo.pdf: 8415473 bytes, checksum: 51d0bbdf612a283f4ad16654565e5eee (MD5)
Previous issue date: 2015-08-28 / Grupo gerador é um equipamento composto por um motor de combustão interna e um alternador, responsável pela geração de energia elétrica no mundo inteiro e também em muitas comunidades isoladas na região amazônica. O uso de combustíveis de origem fóssil em grupos geradores é bastante comum, havendo uma grande dependência mundial, desse tipo de combustível. Diante de um cenário mundial com possibilidades de escassez de petróleo e água, e apesar da matriz energética diversificada, o Brasil tem forte dependência dessas duas fontes de energia para geração de eletricidade. As pesquisas envolvendo a utilização de óleo vegetal “in natura” para substituir, parcial ou totalmente, os combustíveis fósseis, ou ser misturado a outros tipos de combustível vêm crescendo. Neste trabalho, foi realizada uma modelagem e simulação computacional de um grupo gerador consumindo óleo vegetal “in natura”, enriquecido com hidrogênio e oxigênio com o objetivo de melhorar sua eficiência energética, a partir de melhorias propostas na combustão. A modelagem e simulações foram realizadas com o software AVL BOOST®. O modelo computacional foi ajustado e validado junto a experimento realizado em um motor quatro tempos Diesel, injeção indireta, naturalmente aspirado, de 20 kW. O trabalho foi desenvolvido em duas fases. Na primeira, foi feita a substituição energética de óleo vegetal por hidrogênio, em parcelas de 0% a 20%, com intervalos de 5%. Na segunda, oxigênio, em base mássica, foi adicionado ao ar de admissão, em proporções pré-definidas, e o modelo foi simulado até que fosse atingido o limite operacional do motor. Foi considerado nas simulações, o grupo gerador operando com cargas de 75%, 80% e 100%. Nas duas etapas da investigação, os resultados indicaram um aumento na potência elétrica, diminuição do consumo específico de combustível e melhoria no rendimento global do grupo gerador. A utilização de H2 indicou aumento das emissões à plena carga. Na simulação realizada com O2, a formação de CO apresentou queda e Nox aumentou para cargas parciais. As simulações indicaram que a utilização desses dois vetores energéticos mostrou-se bastante promissora, melhorando a combustão do óleo vegetal “in natura“ e a eficiência energética do grupo gerador. / Generator set is a device formed by an internal combustion engine and an alternator responsible for electricity generation all over the world and in many isolated communities in the Amazon region. The use of fossil fuels in generators is very common with a great global dependency on this type of fuel. Facing a world stage with possibility of shortages of oil and water and despite the diversified energy matrix, Brazil has strong dependence of these two energy sources for electricity generation. Researches involving the use of vegetable oil "in natura" to replace, partially or completely, fossil fuels, or be mixed with other types of fuel are growing. In this paper, a modeling and computer simulation of a genset consuming vegetable oil "in natura" enriched with hydrogen and oxygen was carried out in order to improve their energy efficiency as from proposed improvements in the combustion. The modeling and simulations were performed with AVL Boost® software. The computational model was adjusted and validated with the experiment carried out in a Diesel engine of 20 kW, four strokes, indirect injection, naturally aspirated. The study was developed in two phases. At first, the energy substitution of vegetable oil by hydrogen was made in portions of 0% to 20%, in 5% intervals. In the second, oxygen in weight basis was added to the intake air in predefined proportions and the model was simulated until the engine operating limit was reached. It was considered the genset operating with loads of 75%, 80% and 100%, in the simulations. In the two stages of the investigation, the results indicated an increase in electrical power, reduced specific fuel consumption and improved overall efficiency of the generator set. The use of H2 showed increased emissions at full load. In the simulation performed with O2, CO formation decreased and NOx formation increased to partial loads. The simulations indicated that the use of these two energy carriers proved to be very promising, improving the combustion of vegetable oil "in natura" and the energy efficiency of the generator set.
|
3 |
Linear Acoustic Modelling and Testing of Exhaust MufflersRamanathan, Sathish Kumar January 2007 (has links)
<p>Intake and Exhaust system noise makes a huge contribution to the interior and exterior noise of automobiles. There are a number of linear acoustic tools developed by institutions and industries to predict the acoustic properties of intake and exhaust systems. The present project discusses and validates, through measurements, the proper modelling of these systems using BOOST-SID and discusses the ideas to properly convert a geometrical model of an exhaust muffler to an acoustic model. The various elements and their properties are also discussed.</p><p>When it comes to Acoustic properties there are several parameters that describe the performance of a muffler, the Transmission Loss (TL) can be useful to check the validity of a mathematical model but when we want to predict the actual acoustic behavior of a component after it is installed in a system and subjected to operating conditions then we have to determine other properties like Attenuation, Insertion loss etc,.</p><p>Zero flow and Mean flow (M=0.12) measurements of these properties were carried out for mufflers ranging from simple expansion chambers to complex geometry using two approaches 1) Two Load technique 2) Two Source location technique. For both these cases, the measured transmission losses were compared to those obtained from BOOST-SID models.</p><p>The measured acoustic properties compared well with the simulated model for almost all the cases.</p>
|
4 |
Linear Acoustic Modelling and Testing of Exhaust MufflersRamanathan, Sathish Kumar January 2007 (has links)
Intake and Exhaust system noise makes a huge contribution to the interior and exterior noise of automobiles. There are a number of linear acoustic tools developed by institutions and industries to predict the acoustic properties of intake and exhaust systems. The present project discusses and validates, through measurements, the proper modelling of these systems using BOOST-SID and discusses the ideas to properly convert a geometrical model of an exhaust muffler to an acoustic model. The various elements and their properties are also discussed. When it comes to Acoustic properties there are several parameters that describe the performance of a muffler, the Transmission Loss (TL) can be useful to check the validity of a mathematical model but when we want to predict the actual acoustic behavior of a component after it is installed in a system and subjected to operating conditions then we have to determine other properties like Attenuation, Insertion loss etc,. Zero flow and Mean flow (M=0.12) measurements of these properties were carried out for mufflers ranging from simple expansion chambers to complex geometry using two approaches 1) Two Load technique 2) Two Source location technique. For both these cases, the measured transmission losses were compared to those obtained from BOOST-SID models. The measured acoustic properties compared well with the simulated model for almost all the cases.
|
Page generated in 0.0302 seconds