1 |
Capacity of Communications Channels with 1-Bit Quantization and Oversampling at the ReceiverKrone, Stefan, Fettweis, Gerhard 25 January 2013 (has links) (PDF)
Communications receivers that rely on 1-bit analogto-digital conversion are advantageous in terms of hardware complexity and power dissipation. Performance limitations due to the 1-bit quantization can be tackled with oversampling. This paper considers the oversampling gain from an information-theoretic perspective by analyzing the channel capacity with 1-bit quantization and oversampling at the receiver for the particular case of AWGN channels. This includes a numerical computation of the capacity and optimal transmit symbol constellations, as well as the derivation of closed-form expressions for large oversampling ratios and for high signal-to-noise ratios of the channel.
|
2 |
Communications with 1-Bit Quantization and Oversampling at the Receiver: Benefiting from Inter-Symbol-InterferenceKrone, Stefan, Fettweis, Gerhard 25 January 2013 (has links) (PDF)
1-bit analog-to-digital conversion is very attractive for low-complexity communications receivers. A major drawback is, however, the small spectral efficiency when sampling at symbol rate. This can be improved through oversampling by exploiting the signal distortion caused by the transmission channel. This paper analyzes the achievable data rate of band-limited communications channels that are subject to additive noise and inter-symbol-interference with 1-bit quantization and oversampling at the receiver. It is shown that not only the channel noise but also the inter-symbol-interference can be exploited to benefit from oversampling.
|
3 |
Capacity of Communications Channels with 1-Bit Quantization and Oversampling at the ReceiverKrone, Stefan, Fettweis, Gerhard January 2012 (has links)
Communications receivers that rely on 1-bit analogto-digital conversion are advantageous in terms of hardware complexity and power dissipation. Performance limitations due to the 1-bit quantization can be tackled with oversampling. This paper considers the oversampling gain from an information-theoretic perspective by analyzing the channel capacity with 1-bit quantization and oversampling at the receiver for the particular case of AWGN channels. This includes a numerical computation of the capacity and optimal transmit symbol constellations, as well as the derivation of closed-form expressions for large oversampling ratios and for high signal-to-noise ratios of the channel.
|
4 |
Communications with 1-Bit Quantization and Oversampling at the Receiver: Benefiting from Inter-Symbol-InterferenceKrone, Stefan, Fettweis, Gerhard January 2012 (has links)
1-bit analog-to-digital conversion is very attractive for low-complexity communications receivers. A major drawback is, however, the small spectral efficiency when sampling at symbol rate. This can be improved through oversampling by exploiting the signal distortion caused by the transmission channel. This paper analyzes the achievable data rate of band-limited communications channels that are subject to additive noise and inter-symbol-interference with 1-bit quantization and oversampling at the receiver. It is shown that not only the channel noise but also the inter-symbol-interference can be exploited to benefit from oversampling.
|
Page generated in 0.0149 seconds