• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructure and Properties of AZ31 Magnesium Alloy Processed by Equal Channel Angular Extrusion.

Ding, Shi-xuan 17 September 2008 (has links)
none
2

Vliv hyaluronové kyseliny na korozi hořčíkové slitiny AZ31 / Effect of hyaluronic acid on the corrosion of AZ31 magnesium alloy

Holubářová, Michaela January 2021 (has links)
Magnesium and its alloys are interesting materials due to their many physical properties. They have considerable potential, especially in medical applications, where they can serve as a material for the production of orthopedic and cardiovascular implants. The disadvantage of these materials is their sensitivity to corrosion. As a result, it is necessary to know the corrosive properties of magnesium and its alloys in contact with substances that occur in the human body. Hyaluronan is a polysaccharide that is naturally present in the human body and can interact with implants. This master's thesis deals with the influence of low molecular weight (80–130 kDa) and high molecular weight (1 500–1 750 kDa) hyaluronan on the corrosion properties of magnesium alloy AZ31 in the environment of two simulated physiological solutions (0,9 % NaCl and synovial fluid). Potentiodynamic polarization (PD) and electrical impedance spectroscopy (EIS) were used for electrochemical tests. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to reveal the chemical composition of the corrosion products and the surface morphology after corrosion.
3

Application of High Resolution Electron Backscatter Diffraction(HR-EBSD) Techniques to Twinning Deformation Mechanism in AZ31 Magnesium Alloy

Khosravani, Ali 14 March 2012 (has links) (PDF)
The application of high resolution electron backscatter diffraction (HR-EBSD) techniques has been used in order to study the evolution of geometrically necessary dislocation (GND). The tested materials were taken from AZ31 magnesium sheet which had strong basal texture. Because of low symmetry of the magnesium crystal lattice, the von Mises criteria cannot be satisfied by the three independent, easily activated, basal slips. The strain along the c-axis of the crystal must be accommodated by either twinning and/or slip systems. HR-EBSD data was taken in order to investigate these phenomena. The HR-EBSD results were post processed in order to resolve total GND density onto the observed possible slip systems. The first chapter of the investigation focused on the correlation between resolved GNDs with tensile twin nucleation, and the subsequent propagation path in the microstructure. For this purpose, 2.5 % strain was applied in a uniaxial compression test along the transverse direction (TD). Several fine scan were done at the boundaries where twin formed. The results show that in order for a twin to nucleate spontaneously at the grain boundaries, two criteria should generally be met: high angle grain boundaries (35-45°) and pile ups of basal slip system in neighboring grain at the other side of the boundary. Furthermore, once nucleation has initiated, twin propagation can occur through low angle grain boundaries (15-25°); if a twin reaches a high angle boundary, it will generally terminate at the boundary at low strain levels. A twin may pass through high angle boundaries with further deformation. In the second chapter, deformation of the AZ31 magnesium alloy was study for different strain paths. For this purpose, compression and tension in-situ tests were done and the texture and GND evolutions were investigated. The results show that the load paths, compression and tension, evolve the microstructure in different ways. Massive twin fractions were formed in compression, and higher GND contents were observed in tension tests. It was observed that at higher strain levels GND contents are roughly independent of the initial texture but the activation of slip systems at low strain strongly depends on initial structure. If the samples were loaded along RD, GND density increased sharply at low strain. In contrast, for the samples loaded along TD, GND increased moderately. A small amount of repetition is apparent in the two parts of the thesis due to them being formatted for individual publication as journal papers.
4

Superplastic Deformation Behaviour Of AZ31 Magnesium Alloy

Panicker, Radhakrishna M R 08 1900 (has links)
Superplastic deformation behaviour of AZ31 magnesium alloy having initial grain sizes 8, 11 and 17μm alloy was investigated at 673 K with initial strain rates ranging from 1x10-2 to 1x10-4 s-1. Mechanical data on fine grained AZ31 alloy with grain sizes 8 and 11 μm indicated a transition in deformation mechanisms. The strain rate sensitivity, m ~ 0.5 at low strain rates and m ~ 0.2 at high strain rates which suggest GBS and dislocation slip as the corresponding deformation mechanism. For coarse grained alloy having grain size 17 μm, m < 0.4 at low strain rates and ~ 0.2 at high strain rates, suggesting dislocation slip as the deformation mechanism. A superplastic maximum elongation of ~ 475% was observed for 8 μm alloy at low rate of deformation. At high strain rates, the deformation was non-superplastic for fine and coarse grained alloys. The contribution of GBS to total strain, ξ in the low strain rate regime was evaluated to be 50 – 60%, for both low and high elongation. EBSD studies indicated the maintenance of high fraction of high angle boundaries up to true strain of ~ 0.88 and a reduction in texture intensity. These observations show GBS as the dominant deformation mechanism for fine grained alloy. At higher strain rate, ξ was estimated to be 30%. Fraction of high angle boundaries was reduced and [0001] direction of grains was found to be rotated towards the tensile direction, suggesting dislocation slip. Based on mechanical data, flow localization and cavitation studies; the failure of the material during high rates of deformation was mainly due to flow localization. Extensive cavitation along with more uniform flow at a lower strain rate regime suggests the failure due to the cavity interlinkage and coalescence. The present GBS data are consistent with the previous relevant data in fine grained Mg based alloys in the low strain rate regime. The GBS data obtained in the dislocation regime in the present study are also in agreement with that of the previous investigations in fine grained Mg alloys.
5

INTEGRATED APPROACH TO THE SUPERPLASTIC FORMING OF MAGNESIUM ALLOYS

Abu-Farha, Fadi K. 01 January 2007 (has links)
The economical and environmental issues associated with fossil fuels have been urging the automotive industry to cut the fuel consumption and exhaust emission levels, mainly by reducing the weight of vehicles. However, customers increasing demands for safer, more powerful and luxurious vehicles have been adding more weight to the various categories of vehicles, even the smallest ones. Leading car manufacturers have shown that significant weight reduction, yet satisfying the growing demands of customers, would not be feasible without the extensive use of lightweight materials. Magnesium is the lightest constructional metal on earth, offering a great potential for weight-savings. However, magnesium and its alloys exhibit inferior ductility at low temperatures, limiting their practical sheet metal applications. Interestingly, some magnesium alloys exhibit superplastic behaviour at elevated temperatures; mirrored by the extraordinarily large ductility, surpassing that of conventional steels and aluminium alloys. Superplastic forming technique is the process used to form materials of such nature, having the ability to deliver highly-profiled, yet very uniform sheet-metal products, in one single stage. Despite the several attractions, the technique is not widely-used because of a number of issues and obstacles. This study aims at advancing the superplastic forming technique, and offering it as an efficient process for broader utilisation of magnesium alloys for sheet metal applications. The focus is primarily directed to the AZ31 magnesium alloy, since it is commercially available in sheet form, possesses good mechanical properties and high strength/weight ratio. A general multi-axial anisotropic microstructure-based constitutive model that describes the deformation behaviour during superplastic forming is first developed. To calibrate the model for the AZ31 magnesium alloy, systematic uniaxial and biaxial stretching tests are carried out over wide-ranging conditions, using 3 specially-designed fixtures. In a collaborative effort thereafter, the calibrated constitutive model is fed into a FE code in conjunction with a stability criterion, in order to accurately simulate, control and ultimately optimise the superplastic forming process. Special pneumatic bulge forming setup is used to validate some proposed optimisation schemes, by forming sheets into dies of various geometries. Finally, the materials post-superplastic-forming properties are investigated systematically, based on geometrical, mechanical and microstructural measures.
6

Material interactions in a novel Refill Friction Stir Spot Welding approach to joining Al-Al and Al-Mg automotive sheets

Al-Zubaidy, Basem January 2017 (has links)
Refill Friction Stir Spot Welding (RFSSW) is a new solid-state joining technology, which is suitable for joining similar and dissimilar overlap sheets connections, particularly in aluminium and magnesium alloys. This welding method is expected to have wide applications in joining of body parts in the automotive industry. In the present study, RFSSW has been used to join 1.0 mm gauge sheets of two material combinations: similar AA6111-T4 automotive aluminium alloy joints and a dissimilar aluminium AA6111-T4 to magnesium AZ31-H24 alloy combinations. The performance of the joints was investigated in terms of the effect of the welding parameters (including tool rotation rate, sleeve plunge depth, and welding time etc.) to improve current understanding and allow optimisation of the process for short welding-cycles when joining similar and dissimilar light alloys. The results of the investigations on similar AA6111 welds showed the ability to use a wide window of process parameters that resulted in joints with a successfully refilled keyhole and flat weld surface, even when using a welding time as short as 0.5 s. The joints in the as-welded condition showed strengths as high as 4.2 kN, when using welding parameters of 1500 rpm, 1.0 mm with a range of welding times from 0.55 to 2.0 s. All joints showed a nugget pull-out failure mode when using a sleeve plunge depth of 0.8 mm or more, as a result of increasing the joint area. The strength of the joints further improved and reached peak loads of 5.15 and 6.43 kN after natural and artificial ageing, respectively, for welds produced using optimised welding parameters of a 2500 rpm tool rotation rate, a 1.5 s welding time and a 1.0 mm plunge. This improvement in strength resulted from the improvement in the local mechanical properties in the HAZ and other regions, which results from a minimal HAZ due to the rapid weld cycle and the re-precipitation of GPZs and clustering on natural ageing, or β on artificial ageing. A modification to the RFSSW process was developed in this project to solve the problems faced when dissimilar welding Mg to Al. This modified process involved adding a final brief pin plunge stage to consolidate refill defects and it was successful in producing nearly defect-free joints with improved mechanical properties, using a wide range of the process parameters. The average peak load of the joints increased with increasing tool rotation rate, to reach a maximum value at 2500 rpm due to eliminating the weld defects by increasing the material plasticity. However, increasing the tool rotation rate further to 2800 rpm led to a decrease in the average peak failure load due to eutectic melting at the weld interface. The optimum welding condition was thus found to be: 2500 rpm, 1.0 s, and 1.0 mm, which gave an average peak failure load of 2.4 kN and average fracture energy of 1.3 kN.mm. These values represent an improvement of about 10 % and 27 %, respectively, compared to welds produced with the conventional RFSSW process, and about 112 % and 78 % of the Mg-Mg similar joints produced using the same welding conditions. A FE model developed in this project was successful in increasing understanding of the behaviour of the RFSSW joints when subjected to lap tensile-shear loading. The stress and strain distribution in the modelled samples showed that the highest concentration occurring in the region of the confluence of the SZ with the two sheets. With increasing extension, these regions of highest stress and strain propagated to the outer surfaces of the two sheets and then annularly around the weld nugget. This annular ring of high strain concentration agreed well with the failure path and results in the full plug pull-out fracture mode shown by the experimentally tested samples. The predicted force-extension curves showed high agreement with the experimental results, especially when including the effect of the hook defect and correction of compliance in the experimental results.
7

Příprava a charakterizace konverzních fluoridových povlaků na biodegradabilních hořčíkových slitinách / Preparation and Characterization of Fluoride Conversion Coatings on Biodegradable Magnesium Alloys

Drábiková, Juliána January 2018 (has links)
The submitted work is aimed at the unconventional fluoride conversation coating preparation on the AZ31, AZ61, ZE10 and ZE41 magnesium alloys by their immersion in Na[BF4] molten salt. The influence of the preparation parameters (such as temperature and time) on the quality of the fluoride conversion coating is investigated. Methods of light and scanning electron microscopy were used for the evaluation of morphology, chemical composition and thickness of the coating. Short and long-term corrosion tests were executed to analyze the corrosion performance in simulated body fluid solution at 37 ± 2 °C with and without the fluoride conversion coating. The short-term behavior was evaluated by potentiodynamic tests, namely by the linear polarization. Long-term performance was assessed by electrochemical impedance spectroscopy or immersion tests. The coating preparation parameters influence on the character of the formed fluoride conversion coating was defined based on the obtained results. The next part of the thesis deals with the description of the possible mechanism of formation and kinetics of growth of the unconventional fluoride conversion coating on the selected AZ61 magnesium alloy. In this part, further detailed analyses were carried out to investigate the microstructure and chemical composition of the fluoride conversion coating using focused ion beam, transmission electron microscopy and X-ray photoelectron spectroscopy.
8

Mechanické a fyzikální vlastnosti hořčíkových slitin připravených metodou rotačního kování / Mechanical and physical properties of magnesium alloys prepared by rotary swaging

Škraban, Tomáš January 2020 (has links)
in english For their positive influence on mechanical and physical properties of the material, methods of severe plastic deformation are popular for quite some time today. Rotary swaging is one of them. With its simplicity and productivity, it has the potential for industrial use. It is a radial swaging of rods or tubes, which results in decreasing of their diameter. Influence of this method is researched on extruded rods made of magnesium alloy AZ31. Experiments are made on five samples of different degree of swaging (different diameter). This allows to research gradual evolution of properties during the swaging. Results show significant positive influence on grain size (and microstructure in general) of originally extruded rod. During swaging there is an evolution of material texture and increase in strength.
9

Příprava a charakterizace pokročilých žárově stříkaných povlaků na hořčíkových slitinách / Preparation and Characterization of Advanced Thermally-sprayed Coatings on Magnesium Alloys

Buchtík, Martin January 2020 (has links)
The proposed dissertation thesis deals with the characterization of HVOF and APS-thermally sprayed coatings prepared on the AZ31 and AZ91 magnesium substrates. The theoretical part of the thesis describes in-detail Mg substrates used in the experimental part of the thesis. There are also characterized materials and coatings based on NiCrAlY and FeCrNiMoSiC metals, WC-CoCr cermets, and YSZ ceramic materials. At the end of the theoretical part, the literary research summarizing the characterization and analysis performed on thermally sprayed coatings on Mg alloys. Based on the theoretical knowledge, the characterization of Mg substrates and deposited coatings was performed in terms of the surface morphology, microstructure, and the chemical composition using the light microscopy (LM) and scanning electron microscopy with energy-dispersive spectroscopy (SEM+EDS). The phase composition of the coatings was analyzed using the X-ray diffraction (XRD). The diffractions corresponding to the sprayed coatings were compared with the feedstock powders, i.e. materials used for the spraying of the coatings. The characterization of the prepared coatings in terms of the mechanical and tribological properties was performed. The hardness and microhardness of the coatings as well as the coefficient of friction, and the wear rate were measured. The last chapter of the experimental part deals with the evaluation of the electrochemical corrosion properties by the potentiodynamic measurements in a 3.5% NaCl solution. In the case of exposed samples, the evaluation of the surface and coating/substrate interface was performed using LM and SEM with EDS. The mechanism of the corrosion attack and degradation was determined from the acquired knowledge and base on the results of the short-term measurements. Based on the measured results, it can be stated that the deposited coatings were successfully applied on the surface of both Mg alloys. All the coatings increase the surface hardness of the Mg alloys and significantly improve their tribological properties. However, except for FeCrNiMoSiC coatings, the corrosion properties of Mg alloys deteriorate due to the fact that the corrosion environment can pass through the coating to the less noble Mg substrate and the corrosion microcells are created.
10

Electrochemical behaviors of micro-arc oxidation coated magnesium alloy

Liu, Jiayang January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In recent years, magnesium alloys, due to their high strength and biocompatibility, have attracted significant interest in medical applications, such as cardiovascular stents, orthopedic implants, and devices. To overcome the high corrosion rate of magnesium alloys, coatings have been developed on the alloy surface. Most coating methods, such as anodic oxidation, polymer coating and chemical conversion coating, cannot produce satisfactory coating to be used in human body environment. Recent studies demonstrate that micro-arc oxidation (MAO) technique can produce hard, dense, wear-resistant and well-adherent oxide coatings for light metals such as aluminum, magnesium, and titanium. Though there are many previous studies, the understanding of processing conditions on coating performance remains elusive. Moreover, previous tests were done in simulated body fluid. No test has been done in a cell culture medium, which is much closer to human body environment than simulated body fluid. In this study, the effect of MAO processing time (1 minute, 5 minutes, 15 minutes, and 20 minutes) on the electrochemical behaviors of the coating in both conventional simulated body fluid and a cell culture medium has been investigated. Additionally a new electrolyte (12 g/L Na2SiO3, 4 g/L NaF and 4 ml/L C3H8O3) has been used in the MAO coating process. Electrochemical behaviors were measured by performing potentiodynamic polarization and electrochemical impedance spectroscopy tests. In addition to the tests in simulated body fluid, the MAO-coated and uncoated samples were immersed in a cell culture medium to investigate the corrosion behaviors and compare the difference in these two kinds of media. The results show that in the immersion tests in conventional simulated body fluid, the 20-minute MAO coated sample has the best resistance to corrosion due to the largest coating thickness. In contrast, in the cell culture medium, all MAO coated samples demonstrate a similar high corrosion resistance behavior, independent of MAO processing time. This is probably due to the organic passive layers formed on the coating surfaces. Additionally, a preliminary finite element model has been developed to simulate the immersion test of magnesium alloy in simulated body fluid. Comparison between the predicted corrosion current density and experimental data is discussed.

Page generated in 0.0835 seconds