• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 93
  • 93
  • 26
  • 26
  • 16
  • 15
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Non-existence of a stable homotopy category for p-complete abelian groups

Vanderpool, Ruth, 1980- 06 1900 (has links)
vii, 54 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We investigate the existence of a stable homotopy category (SHC) associated to the category of p -complete abelian groups [Special characters omitted]. First we examine [Special characters omitted] and prove [Special characters omitted] satisfies all but one of the axioms of an abelian category. The connections between an SHC and homology functors are then exploited to draw conclusions about possible SHC structures for [Special characters omitted]. In particular, let [Special characters omitted] denote the category whose objects are chain complexes of [Special characters omitted] and morphisms are chain homotopy classes of maps. We show that any homology functor from any subcategory of [Special characters omitted] containing the p-adic integers and satisfying the axioms of an SHC will not agree with standard homology on free, finitely generated (as modules over the p -adic integers) chain complexes. Explicit examples of common functors are included to highlight troubles that arrise when working with [Special characters omitted]. We make some first attempts at classifying small objects in [Special characters omitted]. / Committee in charge: Hal Sadofsky, Chairperson, Mathematics; Boris Botvinnik, Member, Mathematics; Daniel Dugger, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Elizabeth Reis, Outside Member, Womens and Gender Studies
62

Studies of equivalent fuzzy subgroups of finite abelian p-Groups of rank two and their subgroup lattices

Ngcibi, Sakhile Leonard January 2006 (has links)
We determine the number and nature of distinct equivalence classes of fuzzy subgroups of finite Abelian p-group G of rank two under a natural equivalence relation on fuzzy subgroups. Our discussions embrace the necessary theory from groups with special emphasis on finite p-groups as a step towards the classification of crisp subgroups as well as maximal chains of subgroups. Unique naming of subgroup generators as discussed in this work facilitates counting of subgroups and chains of subgroups from subgroup lattices of the groups. We cover aspects of fuzzy theory including fuzzy (homo-) isomorphism together with operations on fuzzy subgroups. The equivalence characterization as discussed here is finer than isomorphism. We introduce the theory of keychains with a view towards the enumeration of maximal chains as well as fuzzy subgroups under the equivalence relation mentioned above. We discuss a strategy to develop subgroup lattices of the groups used in the discussion, and give examples for specific cases of prime p and positive integers n,m. We derive formulas for both the number of maximal chains as well as the number of distinct equivalence classes of fuzzy subgroups. The results are in the form of polynomials in p (known in the literature as Hall polynomials) with combinatorial coefficients. Finally we give a brief investigation of the results from a graph-theoretic point of view. We view the subgroup lattices of these groups as simple, connected, symmetric graphs.
63

A study of fuzzy sets and systems with applications to group theory and decision making

Gideon, Frednard January 2006 (has links)
In this study we apply the knowledge of fuzzy sets to group structures and also to decision-making implications. We study fuzzy subgroups of finite abelian groups. We set G = Z[subscript p[superscript n]] + Z[subscript q[superscript m]]. The classification of fuzzy subgroups of G using equivalence classes is introduced. First, we present equivalence relations on fuzzy subsets of X, and then extend it to the study of equivalence relations of fuzzy subgroups of a group G. This is then followed by the notion of flags and keychains projected as tools for enumerating fuzzy subgroups of G. In addition to this, we use linear ordering of the lattice of subgroups to characterize the maximal chains of G. Then we narrow the gap between group theory and decision-making using relations. Finally, a theory of the decision-making process in a fuzzy environment leads to a fuzzy version of capital budgeting. We define the goal, constraints and decision and show how they conflict with each other using membership function implications. We establish sets of intervals for projecting decision boundaries in general. We use the knowledge of triangular fuzzy numbers which are restricted field of fuzzy logic to evaluate investment projections.
64

Group laws and complex multiplication in local fields.

Urda, Michael January 1972 (has links)
No description available.
65

Equilibrium states of ferromagnetic abelian lattice systems

Miekisz, Jacek January 1984 (has links)
Ferromagnetic abelian lattice systems are the topic of this paper. Namely, at each site of ZV-invariant lattice is placed a finite abelian group. The interaction is given by any real, negative definite, and translation invariant function on the space of configurations.Algebraic structure of the system is investigated. This allows a complete · description of the family of equilibrium states for given. interaction at low temperatures. At the same time it is proven that the low temperature expansion for Gibbs free energy is analytic. It is also shown that it is not necessary to consider gauge models in the case of Zm on ZV lattice. / Ph. D.
66

Fourier Transforms of Functions on a Finite Abelian Group

Currey, Bradley Norton 08 1900 (has links)
This paper presents a theory of Fourier transforms of complex-valued functions on a finite abelian group and investigates two applications of this theory. Chapter I is an introduction with remarks on notation. Basic theory, including Pontrvagin duality and the Poisson Summation formula, is the subject of Chapter II. In Chapter III the Fourier transform is viewed as an intertwining operator for certain unitary group representations. The solution of the eigenvalue problem of the Fourier transform of functions on the group Z/n of integers module n leads to a proof of the quadratic reciprocity law in Chapter IV. Chapter V addresses the, use of the Fourier transform in computing.
67

Wiener's Approximation Theorem for Locally Compact Abelian Groups

Shu, Ven-shion 08 1900 (has links)
This study of classical and modern harmonic analysis extends the classical Wiener's approximation theorem to locally compact abelian groups. The first chapter deals with harmonic analysis on the n-dimensional Euclidean space. Included in this chapter are some properties of functions in L1(Rn) and T1(Rn), the Wiener-Levy theorem, and Wiener's approximation theorem. The second chapter introduces the notion of standard function algebra, cospectrum, and Wiener algebra. An abstract form of Wiener's approximation theorem and its generalization is obtained. The third chapter introduces the dual group of a locally compact abelian group, defines the Fourier transform of functions in L1(G), and establishes several properties of functions in L1(G) and T1(G). Wiener's approximation theorem and its generalization for L1(G) is established.
68

The existence of minimal logarithmic signatures for classical groups

Unknown Date (has links)
A logarithmic signature (LS) for a nite group G is an ordered tuple = [A1;A2; : : : ;An] of subsets Ai of G, such that every element g 2 G can be expressed uniquely as a product g = a1a2 : : : ; an, where ai 2 Ai. Logarithmic signatures were dened by Magliveras in the late 1970's for arbitrary nite groups in the context of cryptography. They were also studied for abelian groups by Hajos in the 1930's. The length of an LS is defined to be `() = Pn i=1 jAij. It can be easily seen that for a group G of order Qk j=1 pj mj , the length of any LS for G satises `() Pk j=1mjpj . An LS for which this lower bound is achieved is called a minimal logarithmic signature (MLS). The MLS conjecture states that every finite simple group has an MLS. If the conjecture is true then every finite group will have an MLS. The conjecture was shown to be true by a number of researchers for a few classes of finite simple groups. However, the problem is still wide open. This dissertation addresses the MLS conjecture for the classical simple groups. In particular, it is shown that MLS's exist for the symplectic groups Sp2n(q), the orthogonal groups O 2n(q0) and the corresponding simple groups PSp2n(q) and 2n(q0) for all n 2 N, prime power q and even prime power q0. The existence of an MLS is also shown for all unitary groups GUn(q) for all odd n and q = 2s under the assumption that an MLS exists for GUn 1(q). The methods used are very general and algorithmic in nature and may be useful for studying all nite simple groups of Lie type and possibly also the sporadic groups. The blocks of logarithmic signatures constructed in this dissertation have cyclic structure and provide a sort of cyclic decomposition for these classical groups. / by Nikhil Singhi. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
69

On the minimal logarithmic signature conjecture

Unknown Date (has links)
The minimal logarithmic signature conjecture states that in any finite simple group there are subsets Ai, 1 i s such that the size jAij of each Ai is a prime or 4 and each element of the group has a unique expression as a product Qs i=1 ai of elements ai 2 Ai. Logarithmic signatures have been used in the construction of several cryptographic primitives since the late 1970's [3, 15, 17, 19, 16]. The conjecture is shown to be true for various families of simple groups including cyclic groups, An, PSLn(q) when gcd(n; q 1) is 1, 4 or a prime and several sporadic groups [10, 9, 12, 14, 18]. This dissertation is devoted to proving that the conjecture is true for a large class of simple groups of Lie type called classical groups. The methods developed use the structure of these groups as isometry groups of bilinear or quadratic forms. A large part of the construction is also based on the Bruhat and Levi decompositions of parabolic subgroups of these groups. In this dissertation the conjecture is shown to be true for the following families of simple groups: the projective special linear groups PSLn(q), the projective symplectic groups PSp2n(q) for all n and q a prime power, and the projective orthogonal groups of positive type + 2n(q) for all n and q an even prime power. During the process, the existence of minimal logarithmic signatures (MLS's) is also proven for the linear groups: GLn(q), PGLn(q), SLn(q), the symplectic groups: Sp2n(q) for all n and q a prime power, and for the orthogonal groups of plus type O+ 2n(q) for all n and q an even prime power. The constructions in most of these cases provide cyclic MLS's. Using the relationship between nite groups of Lie type and groups with a split BN-pair, it is also shown that every nite group of Lie type can be expressed as a disjoint union of sets, each of which has an MLS. / by NIdhi Singhi. / Thesis (Ph.D.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
70

Fischer Clifford matrices and character tables of certain groups associated with simple groups O+10(2) [the simple orthogonal group of dimension 10 over GF (2)], HS and Ly.

Seretlo, Thekiso Trevor. January 2011 (has links)
The character table of any finite group provides a considerable amount of information about a group and the use of character tables is of great importance in Mathematics and Physical Sciences. Most of the maximal subgroups of finite simple groups and their automorphisms are extensions of elementary abelian groups. Various techniques have been used to compute character tables, however Bernd Fischer came up with the most powerful and informative technique of calculating character tables of group extensions. This method is known as the Fischer-Clifford Theory and uses Fischer-Clifford matrices, as one of the tools, to compute character tables. This is derived from the Clifford theory. Here G is an extension of a group N by a finite group G, that is G = N.G. We then construct a non-singular matrix for each conjugacy class of G/N =G. These matrices, together with partial character tables of certain subgroups of G, known as the inertia groups, are used to compute the full character table of G. In this dissertation, we discuss Fischer-Clifford theory and apply it to both split and non-split extensions. We first, under the guidance of Dr Mpono, studied the group 27:S8 as a maximal subgroup of 27:SP(6,2), to familiarize ourselves to Fischer-Clifford theory. We then looked at 26:A8 and 28:O+8 (2) as maximal subgroups of 28:O+8 (2) and O+10(2) respectively and these were both split extensions. Split extensions have also been discussed quite extensively, for various groups, by different researchers in the past. We then turned our attention to non-split extensions. We started with 24.S6 and 25.S6 which were maximal subgroups of HS and HS:2 respectively. Except for some negative signs in the first column of the Fischer-Clifford matrices we used the Fisher-Clifford theory as it is. The Fischer-Clifford theory, is also applied to 53.L(3, 5), which is a maximal subgroup of the Lyon's group Ly. To be able to use the Fisher-Clifford theory we had to consider projective representations and characters of inertia factor groups. This is not a simple method and quite some smart computations were needed but we were able to determine the character table of 53.L(3,5). All character tables computed in this dissertation will be sent to GAP for incorporation. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2011.

Page generated in 0.0335 seconds