• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ablation Study on Deeplabv3+ for Semantic Segmentation

Lei, Bowen 01 September 2023 (has links) (PDF)
Semantic segmentation is a fundamental task in computer vision that aims to classify every pixel in an image into different categories. Deep convolutional neural networks (CNNs) have achieved state-of-the-art results in semantic segmentation. Deeplabv3+ is a deep CNN-based model that uses atrous convolution and a decoder network to improve the accuracy of semantic segmentation. In this research, we conduct an ablation study on Deeplabv3+ to analyze the importance of its different components and their impact on the performance of the model, which provides valuable insights for developing more efficient and accurate semantic segmentation models. Our study encompasses a comprehensive examination of Deeplabv3+. We explore its constituent elements, including the backbone network, the Atrous Spatial Pyramid Pooling (ASPP) module, and the decoder network. Our investigation delves into the reasons underlying performance changes resulting from the removal of these architectural components. This analysis provides a deeper understanding of their intrinsic roles in shaping the model’s segmentation efficacy. Notably, we identify that the backbone exerts a substantial impact. Changes to other components yield relatively minor effects, while modifications to the backbone wield a remarkable influence. The Encoder-decoder structure also bears significant weight, playing a pivotal role in the upsampling process. This structure significantly impacts precision, enhancing boundary clarity and positional accuracy. Moreover, we recognize the vital role of feature integration. Features aid in establishing pixel position information, enhancing boundary definition, and positioning accuracy. Furthermore, the ASPP module emerges as a critical factor. ASPP leverages multi-scale information to differentiate complex object boundaries, further enriching the model’s semantic understanding.
2

Designing a Performant Ablation Study Framework for PyTorch

Molinari, Alessio January 2020 (has links)
PyTorch is becoming a really important library for any deep learning practitioner, as it provides many low-level functionalities that allow a fine-grained control of neural networks from training to inference, and for this reason it is also heavily used in deep learning research, where ablation studies are often conducted to validate neural architectures that researchers come up with. To the best of our knowledge, Maggy is the first open-source framework for asynchronous parallel ablation studies and hyperparameter optimization for TensorFlow, and in this work we added important functionalities such as the possibility to execute ablation studies on PyTorch models as well as the generalization of feature ablation on any data type. This work also shows the main challenges and interesting points of developing a framework on top of PyTorch and how these challenges have been addressed in the extension of Maggy. / PyTorch blir ett oerhört viktigt bibliotek för alla utövare inom djupinlärning, detta eftersom PyTorch innehåller flertalet lågnivåfunktioner som möjliggör en finkorning kontroll av neurala nätverk - från träning till inferens. Av den anledningen används PyTorch också kraftigt i forskning om djupinlärning, där ablationsstudier ofta genomförs för att validera neurala arkitekturer som forskare framtagit. Så vitt vi vet är Maggy det första open-source ramverk för asynkrona parallella ablationsstudier och hyperparameteroptimering för TensorFlow. I detta arbete har vi lagt till viktiga funktioner såsom möjligheten att utföra ablationsstudier på PyTorch-modeller samt generalisering av funktionsablation för alla datatyper. Detta arbete upplyser också dem viktigaste utmaningarna och mest intressanta punkterna för att utveckla en ram ovanpå PyTorch och hur dessa utmaningar har hanterats i förlängningen av Maggy.
3

Analyzing How Blended Emotions are Expressed using Machine Learning Methods

Ling, Disen January 2023 (has links)
Blended emotion is a classification of emotional experiences that involve the combination of multiple emotions. Research on the expression of blended emotions allows researchers to understand how different emotions interact and coexist in an individual’s emotional experience. Using machine learning to analyze mixed emotions may indeed bring new insights to the study of blended emotions. This thesis aims to explore blended emotion expression by testing machine learning models (SVM, Decision Tree, and Naive Bayes) trained on the single motion dataset on the blended emotion datasets and vice versa, to analyze the relationship between blended emotions and their constituent emotions. Furthermore, this thesis explores whether there is a dominant emotion in blended emotions and conducts an ablation study to investigate the importance of various facial features within each emotion. The results of testing models’ generalization capabilities propose that blended emotion expressions are highly likely to result from the overlapping combinations of features from their constituent emotions or the combination of some features from one constituent emotion with some from another. Furthermore, based on the dataset used, this thesis also finds that happiness predominated in the blended emotion ’disgust & happiness’. Additionally, an ablation study is conducted to identify the features that have the most significant impact on the accuracy and F1 score of single/pure emotion and blended emotion recognition across various recognition models. / ”Blandade känslor” är en klassificering av känslomässiga upplevelser som innefattar en kombination av flera känslor. Forskning om uttryck av blandade känslor möjliggör för forskare att förstå hur olika känslor interagerar och samexisterar i en individs känslomässiga upplevelse. Användningen av maskininlärning för att analysera blandade känslor kan faktiskt ge nya insikter i studiet av blandade känslor. Denna avhandling syftar till att utforska uttryck av blandade känslor genom att testa maskininlärningsmodeller (SVM, beslutsträd och Naive Bayes) som är tränade på dataset med enskilda känslor på dataset med blandade känslor och vice versa, för att analysera sambandet mellan blandade känslor och deras beståndsdelar. Dessutom utforskar denna avhandling om det finns en dominerande känsla i blandade känslor och genomför en ablationsstudie för att undersöka betydelsen av olika ansiktsdrag inom varje känsla. Resultaten av testning av modellernas generaliseringsförmåga föreslår att uttryck av blandade känslor sannolikt härrör från överlappande kombinationer av drag från deras beståndsdelar eller en kombination av vissa drag från en beståndsdel med vissa från en annan. Vidare, baserat på det använda datasetet, finner denna avhandling också att glädje dominerar i den blandade känslan ’avsky och glädje’. Dessutom genomförs en ablationsstudie för att identifiera de drag som har störst påverkan på noggrannheten och F1-poängen för igenkänning av enskilda/rena känslor och blandade känslor över olika igenkänningsmodeller.

Page generated in 0.0656 seconds