Spelling suggestions: "subject:"absorsor dde potássio"" "subject:"absorsor dde potassio""
1 |
Sistema de absorÃÃo de k+ de alta afinidade em plantas de sorgo forrageiro: papel da h+-atpase de membrana plasmÃtica e dos componentes sensÃvel e nÃo-sensÃvel ao Ãon nh4+ / System of absorption of k+ of high affinity in plants of sorgo forrageiro: paper of h+-atpase of plasmÃtica membrane and the components sensible and not-sensible to ion nh4+Juan Carlos Alvarez Pizarro 08 March 2006 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / O influxo de K+ na faixa de alta afinidade à controlado por transportadores dos tipos canal e carreador, os quais diferem na sua sensibilidade ao Ãon NH4 +. A atividade de ambos os componentes, nÃo-sensÃvel (canal) e sensÃvel (carreador) ao Ãon NH4 + dependem da enzima de membrana plasmÃtica, H+-ATPase. Objetivou-se a caracterizaÃÃo fisiolÃgica e molecular da absorÃÃo de K+ de alta afinidade em sorgo forrageiro [Sorghum bicolor (L.) Moench] sob a influÃncia do estado nutricional da planta e de diferentes fontes de nitrogÃnio inorgÃnico na soluÃÃo de crescimento. Sementes do genÃtipo CSF20 foram germinadas e cultivadas em soluÃÃes nutritivas contendo dois nÃveis de K+ (0,2 e 1,4 mM) e trÃs diferentes regimes de nitrogÃnio inorgÃnico (NO3 - e NH4 + a 4 mM, e a mistura NO3 -/NH4 +, ambos a 2 mM). ApÃs 15 dias de cultivo (t0) em soluÃÃes nutritivas completas, as plantas foram submetidas à deficiÃncia de K+ por 1 (t1), 2 (t2) e 3 (t3) dias. No t0, os teores de K+ da parte aÃrea foram reduzidos ignificativamente pela presenÃa do Ãon NH4 +, enquanto que, nas raÃzes a reduÃÃo foi significativa apenas nos cultivos com 0,2 mM de K+. Conforme o aumento do perÃodo de deficiÃncia, os teores de K+ nas raÃzes e na parte aÃrea tenderam a diminuir em razÃo da diluiÃÃo provocada pelo crescimento da planta. Em plantas cultivadas com 0,2 mM de K+ e com NO3 - e NO3 -/NH4 +, as eficiÃncias de absorÃÃo de K+ foram similares. Entretanto, a presenÃa do Ãon NH4 + como Ãnica fonte de nitrogÃnio, afetou severamente esse parÃmetro. O efeito do Ãon NH4 + na eficiÃncia de absorÃÃo foi mais ameno quando as plantas foram cultivadas a 1,4 mM de K+. A eficiÃncia de transporte de K+ nÃo diferiu em nenhum dos tratamentos testados. As curvas de depleÃÃo de K+ mostraram que as plantas cultivadas com NO3 -/NH4 + e NH4 + apresentaram maior capacidade para esgotar o K+ (100 μM) da soluÃÃo de depleÃÃo quando comparadas Ãquelas crescidas com NO3 -. No t2, maiores taxas de Imax foram observadas nas plantas cultivadas com NH4 + como Ãnica fonte de nitrogÃnio. O Km para o K+, das plantas provindas dos cultivos com 0,2 e 1,4 mM de K+, apresentou valores menores nas plantas tratadas com NH4 + e NO3 -/NH4 +. A induÃÃo da absorÃÃo de alta afinidade de K+ foi influenciada pelo conteÃdo de K+ dos tecidos aÃreos. Ensaios com inibidores mostraram que o influxo de K+ foi significativamente inibido pelo Ãon NH4 + a 1 mM em plantas cultivadas com NO3 - como Ãnica fonte de nitrogÃnio. Entretanto, a capacidade de absorÃÃo de K+ foi reduzida pela presenÃa de TEA nas plantas cultivadas em soluÃÃes contendo o Ãon NH4 + como Ãnica fonte de nitrogÃnio. Esses resultados sugerem que em plantas de sorgo sob deficiÃncia de K+ e na presenÃa do Ãon NH4 + no meio de crescimento, canais de K+ podem contribuir significativamente para o influxo de K+. Por outro lado, na ausÃncia do Ãon NH4 + durante o crescimento, um sistema de transporte mediado por carreadores de K+ seria a via principal para o influxo desse nutriente. A atividade de transporte de H+ da H+-ATPase de membrana plasmÃtica isolada de raÃzes mostrou que a deficiÃncia de K+ (t2) estimulou a capacidade de formaÃÃo do gradiente de H+ em presenÃa do Ãon NH4 + nas plantas provindas dos cultivos com 1,4 mM de K+, enquanto que naquelas provindas dos cultivos com 0,2 mM de K+, o Ãon NH4 + teve efeito na velocidade inicial do transporte de H+ e na hidrÃlise do ATP. A deficiÃncia de K+ na presenÃa do NO3 - nÃo estimulou as atividades da bomba de 11 H+. ImunodetecÃÃo com anticorpos especÃficos contra H+-ATPases de membrana plasmÃtica de plantas mostrou a induÃÃo de duas isoformas nas membranas plasmÃticas oriundas de plantas cultivadas com 0,2 mM de K+, independentemente da fonte de nitrogÃnio e dos perÃodos de deficiÃncia. SeqÃencias gÃnicas correspondentes a genes de H+-ATPases de membrana plasmÃtica (SBA1 e SBA2), canais (SbAKT1) e carreadores de K+ (SbHAK1) foram selecionadas no genoma do sorgo e seus nÃveis de expressÃo em raÃzes analisados por PCR em tempo real. Os genes SBA1 e SBA2 pertencem, respectivamente, aos grupos II e I da famÃlia das H+-ATPases. Em raÃzes provindas dos cultivos com 0,2 mM de K+ e na presenÃa do Ãon NH4 + os nÃveis dos transcritos de SBA1 e SBA2 foram significativamente expressos a partir do tempo t2 de deficiÃncia de K+, enquanto que na presenÃa do Ãon NO3 - eles foram reduzidos conforme o aumento do
tempo de deficiÃncia. Na dose mais alta de K+, os transcritos de SBA1 tiveram sua expressÃo incrementada pela deficiÃncia de K+ em presenÃa do Ãon NH4 + como Ãnica fonte de nitrogÃnio. Ambos os genes tiveram um incremento transitÃrio dos nÃveis dos transcritos no t1 de deficiÃncia de K+ na presenÃa do Ãon NO3 -. Transcritos dos genes SbAKT1 e SbHAK1 nÃo foram detectados. AnÃlises filogenÃticas mostraram que SbAKT à um canal de K+ da famÃlia Shaker, compartilhando origem evolutiva comum com vÃrios canais de K+ de gramÃneas. Os resultados sugerem que a homeostase iÃnica do K+ à alterada pelo Ãon NH4 + em plantas de sorgo. No entanto, a adaptaÃÃo das plantas à presenÃa do Ãon NH4 + envolve a induÃÃo de um sistema altamente eficiente para a aquisiÃÃo de K+, com a participaÃÃo de canais de K+ e da H+-ATPase de membrana plasmÃtica / K+ influx in the range of high affinity is mediated by K+ carriers and channels, which can be distinguished by its differential sensibility to NH4+. The activity of the NH4+-sensitive component (carrier) and NH4+-insensitive component (channel) depend upon plasma membrane H+-ATPase. This work aimed the physiological and molecular characterization of system mediating K+ uptake in the high-affinity range of concentration in sorghum [(Sorghum bicolor (L.) Moench)]. The effect of K+ starvation and nitrogen inorganic source of the growth solution on high-affinity K+ uptake was also studied. Seeds of sorghum, genotype CSF20, were germinated and placed in modified one-fourth Hoagland solutions, which were formulated to contain 0,2 and 1,4 mM K+ and three nitrogen inorganic source, NO3- and NH4+ (4 mM) and NO3-/NH4+ in combination (2mM/2mM). Plants were grown for 15 days (t0) in complete nutritive solutions and then incubated in a K+-free solutions for one (t1), two (t2) and three (t3)days. At t0, K+ content of shoot was significantly decreased in plants grown in the presence of NH4+. In roots, the presence of NH4+ did altered the K+ content only of plants cultivated in solutions with lowest K+ concentration. The K+ content of the plant tissues was progressively reduced according to increasing of starvation period and increasing of dry matter (dilution). The highest reductions were observed in K+ content of the shoot. At the lowest level of K+ (0,2 mM), plants grown in solutions containing NO3- and NO3-/NH4+ showed similar uptake efficiency of K+. Whereas, the presence of NH4 as sole nitrogen source, reduced severely the absorption rates of K+. The effect of NH4+ on uptake efficiency of K+ was alleviated by increasing the external K+ concentration to 1,4 mM K+. At both levels of K+, the translocation rate of K+ was not altered by the presence of NH4 + and by K+ starvation. Assays of depletion in the external medium of K+ (100 μM) showed that plants growing in the presence of NO3-/NH4+ and NH4+ were more efficient to deplete external K+ than plants grown with NO3- , as sole nitrogen source. Kinetic parameters were significantly different at second day (t2) of deprivation. In the presence of NH4 +, as sole nitrogen source, Imax values were higher than those of plants grown in NO3-/NH4 + and NO3 -. On the other hand, Km values were lower in plants from solutions containing NH4+ and NO3 -/NH4 + than those cultivated in NO3-, as sole nitrogen source. High-affinity uptake of K+ responded to changes in plant K+ status, mainly to K+ content of aerial parts. K+ uptake by plants growing in NO3- was significantly inhibited by inclusion of NH4 at 1 mM in depletion solution, whereas it was not inhibited in plants grown with NH4 +, as sole nitrogen source. TEA (tetraethylammonium) inhibited the K+ influx of plants cultivated in solution containing NH4 +, as sole nitrogen source. The results suggest that factors such as presence of K+ or NH4 + during plant growth determine the relative contribution of each component to high-affinity uptake system of K+. In K+-starved plants grown in the presence of NH4 +, K+ channel could contribute to K+ uptake in the range of high-affinity concentration. On the other hand, in K+-starved plants grown without NH4 +, K+ carrier could constitute the principal route for K+ uptake. Active H+-transport driven by plasma membrane H+-ATPase of sorghum roots was stimulated by K+ deficiency and NH4 + in plants from solutions with high K+ level. However, these factors affected the initial rate 13 of H+-pumping and hydrolytic activity of ATP, but not H+-gradient formation, in plants from solutions containing 0,2 mM K+. These activities were not changed when plants were cultivated in growth solutions containing NO3 - and submitted to K+-starvation. Two specific isoforms of PM H+-ATPase by immuno-detection were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3 --grown. cDNA sequences corresponding to plasma membrane H+-ATPase (SBA1 and SBA2), K+ channels (SbAKT) and K+ carrier (SbHAK1) from sorghum genome were identified. The expression level of these genes was analyzed by real-time PCR. SBA1 and SBA2 genes were included at subfamily II and I of plasma membrane H+-ATPase, respectively. In plants cultivated in solutions containing 0,2 mM K+ and with NH4+, the accumulation of SBA1 and SBA2 transcripts was observed after 48 h (t2) of K+ deficiency. Whereas, the expression level of these genes was reduced in plants cultivated with NO3 -. In roots came from solutions containing 1,4 mM K+ level, the accumulation of SBA1 transcripts was only observed in the presence of NH4 + and after 48 h (t2) of K+ deficiency. The transcript level of both genes increased only at t1 in roots cultivated in solution containing NO3 -, as sole nitrogen source. Transcipts of SbAKT and SbHAK1 were not detectable by real-time PCR. Phylogenetic analysis revealed that SbAKT belongs to Shaker channel family of plants and is also closely related to members of other gramineous species. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+ -pumping activity of PM H+-ATPase and K+ channels
|
Page generated in 0.0657 seconds