• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diagnostiques de paquets d'électrons produits par interaction laser-plasma, du THz au rayons X

Plateau, Guillaume 07 October 2011 (has links) (PDF)
Cette thèse présente une série de diagnostiques tir-par-tir non invasifs pour des paquets d'électrons produits par un accélérateur laser-plasma (LPA). Trois phénomènes d'injection du LPA sont caractérisés : auto-injection canalisée et autoguidée, injection dans une rampe plasma et injection par collision de pulses laser. De nouvelles techniques sont démontrées : simplification des mesures de densité en utilisant un détecteur de front d'onde multiplie la sensitivité par 8, le fort couplage spatiotemporel du pulse THz focalisé est démontré par convolution des champs électriques (TEX) de deux pulses sondes et confirme la double structure du paquet observée avec le spectromètre à électrons, et des émittances transverses normalisées de 0.1 mm mrad sont démontrées pour des électrons de 0.5 GeV produits dans un LPA à capillaire en caractérisant la radiation bétatron émise par les électrons à l'intérieur du plasma en utilisant une nouvelle technique de spectrométrie X tir-par-tir.
2

Transport et manipulation d’électrons produits par interaction laser plasma sur la ligne COXINEL / Transport and manipulation of electrons produced by laser plasma interaction on COXINEL beam line

André, Thomas 18 December 2018 (has links)
Les récents progrès en termes de techniques d’accélération par interaction Laser Plasma (LPA) permettent aujourd’hui de générer de forts gradients accélérateurs (GV.m⁻¹); cependant, les faisceaux d’électrons ainsi produits présentent encore une grande dispersion énergie (%) et une divergence élevée (mrad). Le projet COXINEL (ERC Advanced Grant 350014, PI. M.E. Couprie), vise à qualifier, en remplacement d’un accélérateur conventionnel, un accélérateur Laser Plasma, dans le but d’une application de Laser à Électrons Libres. Pour atteindre les propriétés requises, le faisceau d’électrons doit être manipulé à l’aide d’une ligne de transport. Cette ligne est constituée d’un premier triplet de quadrupôles à aimants permanents de gradient variable qui focalise le faisceau et permet la maîtrise de la divergence initiale. Une chicane électromagnétique réduit ensuite la dispersion en énergie par tranche en allongeant longitudinalement le faisceau. Une gamme d’énergie restreinte peut être ensuite sélectionnée via l’insertion d’une fente dans la chicane. Enfin, un quadruplet de quadrupôles électromagnétiques fournit la focalisation finale dans un onduleur. Le travail de thèse porte sur l’étude du transport des faisceaux d’électrons produit par LPA le long de cette ligne. Différents régimes de production d’électrons ont été utilisés : injection par ionisation, cellule de gaz. La maîtrise du transport a été obtenue à l’aide d’une nouvelle méthode d’alignement et de compensation de dérive de pointé initial des électrons en réglant de manière indépendante la position et la dispersion du faisceau à différents endroits de la ligne. Un réglage fin de l’énergie transportée a été effectué en ajustant le gradient des quadrupôles. Les faisceaux produits ont été transportés le long de la ligne et caractérisés en termes de distribution transverse, d’émittance et d’énergie. Les résultats expérimentaux ont ensuite été comparés avec succès aux simulations numériques. Ce travail ouvre la voie à l’observation de rayonnement de l’onduleur, étape préliminaire à une amplification Laser à Électrons Libres. / Recent advances in Laser Plasma Acceleration techniques (LPA) are now able to generate strong accelerating gradients (GV.m⁻¹); however the produced electron beam thus still presents a large energy spread (%) and a large divergence (mrad). The COXINEL project (ERC Advanced Grant 350014, PI. M.E. Couprie), aims at qualifying, in replacement of a conventional accelerator, a Laser Plasma Accelerator, for a Free Electrons Laser application. To achieve the required properties, the electron beam must be manipulated using a transport line. This line consists in a first triplet of permanent magnets quadrupoles of variable gradient which focuses the beam and allows for the control of the initial divergence. An electromagnetic chicane then reduces the slice energy spread by lengthening the beam longitudinally. A restricted energy range can then be selected by inserting a slit inside the chicane. Finally, a quadruple of electromagnetic quadrupoles provides the final focus in an undulator. The thesis deals on the study of electron beam transport produced by LPA along this line. Different electron production regimes have been used: ionization injection, gas cell. The transport was controlled using a new alignment and pointing compensation method for the initial electron beam by adjusting independently the beam position and dispersion at different location on the line. A fine adjustment of the transported energy was carried out by adjusting the quadrupole gradient. The produced beam was transported along the line and was characterized in terms of transverse distribution, emittance and energy. Experimental results were then successfully compared with numerical simulations. This work paves the way for the observation of undulator radiation, a preliminary step before Free Electron Laser amplification.
3

Towards compact and advanced Free Electron Laser / Vers un laser à électrons libres compact et avancé

Ghaith, Amin 02 October 2019 (has links)
Les lasers à électrons libres (LEL) X sont aujourd'hui des sources lumineuses cohérentes et intenses utilisées pour des investigations multidisciplinaires de la matière. Un nouveau schéma d'accélération, l'accélérateur laser plasma (LPA), est maintenant capable de produire une accélération de quelques GeV/cm, bien supérieure à celle des linacs radiofréquence. Ce travail de thèse a été mené dans le cadre des programmes de R&D du projet LUNEX5 (laser à électrons libres utilisant un nouvel accélérateur pour l’exploitation du rayonnement X de 5e génération) de démonstrateur LEL avancé et compact avec applications utilisatrices pilotes. Il comprend un linac supraconducteur de 400 MeV de haute cadence (10 kHz) pour l’étude de schémas LEL avancés, et LPA pour sa qualification par une application LEL. La ligne LEL utilise une configuration d’injection avancée dans la plage spectrale 40-4 nm par génération d’harmoniques à gain élevé (HGHG) et schéma d’écho (EEHG) avec des onduleurs compacts cryogéniques à champ élevé de courte période courte. L'étude de solutions adaptées aux applications LEL compactes et avancées est donc examinée. Un premier aspect concerne la réduction du milieu de gain du LEL (électrons dans l'onduleur), le raccourcissement de la période se faisant au détriment du champ magnétique. Les onduleurs cryogéniques compacts à base d'aimants permanents cryogéniques (CPMU), dans lesquels les performances de l'aimant sont améliorées à la température cryogénique sont étudiés. Une deuxième partie du travail développée dans le cadre l’expérience de R&D COXINEL visant à démontrer l’amplification LEL à l’aide d’un LPA. La ligne permet de manipuler les propriétés des faisceaux d’électrons produits (dispersion en énergie, divergence, variation de pointé) avant d’être utilisées pour des applications de sources lumineuses. Le faisceau d'électrons généré est très divergent et nécessite une bonne manipulation juste après la source avec des quadrupôles forts placés immédiatement après la génération d'électrons. Ainsi, des quadrupôles innovants à aimants permanents de gradient élevé réglable appelés «QUAPEVA», sont développés. Ils sont optimisés avec le code RADIA et caractérisées avec trois mesures magnétiques. Un gradient de 200 T/m avec une variabilité de 50 % est obtenu tout en maintenant une excursion du centre magnétique réduite à ± 10 µm, qui a permis un alignement par compensation de pointé du faisceau dans COXINEL grâce au centre magnétique variable des systèmes, avec un faisceau bien focalisé sans dispersion. Les QUAPEVA constituent des systèmes originaux dans le paysage des quadrupôles à de gradient élevé et variable développés jusqu'à présent. Une troisième partie des travaux concerne l’observation du rayonnement d’onduleur monochromatique ajustable sur la ligne COXINEL. Le faisceau d'électrons d'énergie de 170 MeV est transporté et focalisé dans un CPMU de 2 m et de période de 18 mm émettant à 200 nm. Le flux spectral est caractérisé à l'aide d'un spectromètre UV et le flux angulaire mesuré par une caméra CCD. La longueur d'onde est accordée avec l’entrefer. Les distributions spatio-spectrales mesurées en forme de lune du rayonnement de l'onduleur sont bien reproduites par les simulations de rayonnement utilisant les distributions d’électrons mesurées et transportées le long de la ligne. Elles permettent aussi de renseigner sur la qualité du faisceau d’électrons, de son transport et d'en estimer les paramètres tels que la dispersion en énergie et la divergence. Le dernier aspect du travail est lié à la comparaison entre la génération des harmoniques en gain élevé et le schéma d’écho, dans le cadre de ma participation à une expérience réalisée à FERMI @ ELETTRA. Nous avons pu démontrer un LEL de type écho à 5,9 nm, avec spectres plus étroits et une meilleure reproductibilité que le schéma HGHG à deux étages. Cette thèse constitue un pas en avant vers les lasers à électrons libres compacts et avancés. / X-ray Free Electron Lasers (FEL) are nowadays unique intense coherent fs light sources used for multi-disciplinary investigations of matter. A new acceleration scheme such as Laser Plasma Accelerator (LPA) is now capable of producing an accelerating gradient of few GeV/cm far superior to that of conventional RF linacs. This PhD work has been conducted in the framework of R&D programs of the LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) project of advanced and compact Free Electron laser demonstrator with pilot user applications. It comprises a 400 MeV superconducting linac for studies of advanced FEL schemes, high repetition rate operation (10 kHz), multi-FEL lines, a Laser Wake Field Accelerator (LWFA) for its qualification by a FEL application. The FEL lines comports enables advanced seeding in the 40-4 nm spectral range using high gain harmonic generation (HGHG) and echo-enabled harmonic generation (EEHG) with compact short period high field cryogenic undulators. The study of compact devices suitable for compact FEL applications is thus examined. One first aspect concerns the reduction of the Free Electron Laser gain medium (electrons in undulator) where shortening of the period is on the expense of the magnetic field leading to an intensity reduction at high harmonics. Compact cryogenic permanent magnet based undulators (CPMUs), where the magnet performance is increased at cryogenic temperature making them suitable for compact applications, are studied. Three CPMUs of period 18 mm have been built: two are installed at SOLEIL storage ring and one at COXINEL experiment. A second part of the work is developed in the frame of the R&D programs is the COXINEL experiment with an aim at demonstrating FEL amplification using an LPA source. The line enables to manipulate the properties of the produced electron beams (as energy spread, divergence, induced dispersion due) before being used for light source applications. The electron beam generated is highly divergent and requires a good handling at an early stage with strong quadrupoles, to be installed immediately after the electron generation source. Hence, the development of the so-called QUAPEVAs, innovative permanent magnet quadrupoles with high tunable gradient, is presented. The QUAPEVAs are optimized with RADIA code and characterized with three magnetic measurements. High tunable gradient is achieved while maintaining a rather good magnetic center excursion that allowed for beam pointing alignment compensation at COXINEL, where the beam is well-focused with zero dispersion at any location along the line. The QUAPEVAs constitute original systems in the landscape of variable high gradient quadrupoles developed so far. A third part of the work concerns the observation of tunable monochromatic undulator radiation on the COXINEL line. The electron beam of energy of 170 MeV is transported and focused in a 2-m long CPMU with a period of 18 mm emitting radiation light at 200 nm. The spectral flux is characterized using a UV spectrometer and the angular flux is captured by a CCD camera. The wavelength is tuned with the undulator gap variation. The spatio-spectral moon shape type pattern of the undulator radiation provided an insight on the electron beam quality and its transport enabling the estimation of the electron beam parameters such as energy spread and divergence. The final aspect of the work is related to the comparison between the echo and high gain harmonic generation, in the frame of my participation to an experiment carried out at FERMI@ELETTRA. At FERMI, we have demonstrated a high gain lasing using EEHG at a wavelength of 5.9 nm where it showed a narrower spectra and better reproducibility compared to a two-stage HGHG. This PhD work constitutes a step forward towards advanced compact Free Electron Lasers.
4

Développement d’un accélérateur laser-plasma à haut taux de répétition pour des applications à la diffraction ultra-rapide d’électrons / Interaction of few-cycle laser pulses with plasmas : application to electron acceleration and generation of attosecond electron bunches

Beaurepaire, Benoit 16 September 2016 (has links)
La microscopie électronique et la diffraction d’électrons ont permis de comprendre l’organisation des atomes au sein de la matière. En utilisant une source courte temporellement, il devient possible de mesurer les déplacements atomiques ou les modifications de la distribution électronique dans des matériaux. A ce jour, les sources ultra-brèves pour les expériences de diffraction d’électrons ne permettent pas d’atteindre une résolution temporelle inférieure à la centaine de femtosecondes (fs). Les accélérateurs laser-plasma sont de bons candidats pour atteindre une résolution temporelle de l’ordre de la femtoseconde. De plus, ces accélérateurs peuvent fonctionner à haut taux de répétition, permettant d’accumuler un grand nombre de données.Dans cette thèse, un accélérateur laser-plasma fonctionnant au kHz a été développé et construit. Cette source accélère des électrons à une énergie de 100 keV environ à partir d’impulsions laser d’énergie 3 mJ et de durée 25 fs. La physique de l’accélération a été étudiée, démontrant entre autres l’effet du front d’onde laser sur la distribution transverse des électrons.Les premières expériences de diffraction avec ce type de sources ont été réalisées. Une expérience de preuve de principe a montré que la qualité de la source est suffisante pour obtenir de belles images de diffraction sur des feuilles d’or et de silicium. Dans un second temps, la dynamique structurelle d’un échantillon de Silicium a été étudiée avec une résolution temporelle de quelques picosecondes, démontrant le potentiel de ce type de sources.Pour augmenter la résolution temporelle à sub-10 fs, il est nécessaire d’accélérer les électrons à des énergies relativistes de quelques MeV. Une étude numérique a montré que l’on peut accélérer des paquets d’électrons ultra-courts grâce à des impulsions laser de 5 mJ et 5 fs. Il serait alors possible d’atteindre une résolution temporelle de l’ordre de la femtoseconde. Finalement, une expérience de post-compression des impulsions laser due à l’ionisation d’un gaz a été réalisée. La durée du laser a pu être réduite d’un facteur deux, et l’homogénéité de ce processus a été étudiée expérimentalement et numériquement. / Electronic microscopy and electron diffraction allowed the understanding of the organization of atoms in matter. Using a temporally short source, one can measure atomic displacements or modifications of the electronic distribution in matter. To date, the best temporal resolution for time resolved diffraction experiments is of the order of a hundred femtoseconds (fs). Laser-plasma accelerators are good candidates to reach the femtosecond temporal resolution in electron diffraction experiments. Moreover, these accelerators can operate at a high repetition rate, allowing the accumulation of a large amount of data.In this thesis, a laser-plasma accelerator operating at the kHz repetition rate was developed and built. This source generate electron bunches at 100 keV from 3 mJ and 25 fs laser pulses. The physics of the acceleration has been studied, and the effect of the laser wavefront on the electron transverse distribution has been demonstrated.The first electron diffraction experiments with such a source have been realized. An experiment, which was a proof of concept, showed that the quality of the source permits to record nice diffraction patterns on gold and silicium foils. In a second experiment, the structural dynamics of a silicium sample has been studied with a temporal resolution of the order of a few picoseconds.The electron bunches must be accelerated to relativistic energies, at a few MeV, to reach a sub-10 fs temporal resolution. A numerical study showed that ultra-short electron bunches can be accelerated using 5 fs and 5 mJ laser pulses. A temporal resolution of the order of the femtosecond could be reached using such bunches for electron diffraction experiments. Finally, an experiment of the ionization-induced compression of the laser pulses has been realized. The pulse duration was shorten by a factor of 2, and the homogeneity of the process has been studied experimentally and numerically.

Page generated in 0.1141 seconds