Spelling suggestions: "subject:"accélération para sillage laser"" "subject:"accélérations para sillage laser""
1 |
Modélisation d'un injecteur laser-plasma pour l'accélération multi-étages / Modelling of a laser-plasma injector for multi-stage accelerationLee, Patrick 11 July 2017 (has links)
L’accélération par sillage laser (ASL) repose sur l’interaction entre un faisceau laser intense et un plasma sous-dense. Au travers de cette interaction, une onde de plasma est générée avec un fort champ accélérateur, de trois ordres de grandeur plus élevé que celui d’un accélérateur conventionnel, rendant envisageable la réalisation d’accélérateurs futurs plus compacts. Pour la conception d’un futur accélérateur, un faisceau d’électrons de forte charge, faible dispersion en énergie et faible émittance doit être accéléré à des grandes énergies. Pour ce faire, la solution consiste à accélérer ces électrons dans un schéma multi-étages, qui est composé de trois étages: un injecteur, une ligne de transport et un accélérateur. Ce travail de thèse porte sur la modélisation de l’injecteur avec le code PIC Warp et sur les méthodes numériques telles que la technique de Lorentz-boosted frame pour diminuer le temps de calcul et la couche absorbante parfaite de Bérenger (PML) pour assurer la précision des calculs numériques. Ce travail de thèse a démontré l’efficacité de la PML dans les schémas FDTD à des ordres élevés et pseudo-spectral. Il a aussi démontré la convergence des résultats des simulations réalisées avec la technique de Lorentz-boosted frame dans un régime fortement non-linéaire de l’injecteur, permettant d’accélérer les calculs d’un facteur important (36) tout en assurant leur précision. La modélisation effectuée dans cette thèse a permis d’analyser et de comprendre les résultats expérimentaux, ainsi que de prédire les résultats des futures expériences. Plusieurs méthodes d’optimisation de l’injecteur ont également été proposées pour la génération d’un faisceau d’électrons conforme aux spécifications d’un futur accélérateur. / Laser Wakefield Acceleration (LWFA) relies on the interaction between an intense laser pulse and an under-dense plasma. This interaction generates a plasma wave with a strong accelerating field, which is three orders of magnitude higher than the one of the conventional accelerator; more compact accelerator is therefore theoretically possible. In the design of a future accelerator, a high quality electron bunch with a high charge, low energy spread and low emittance has to be accelerated to high energies. A solution for this is a multi-stage accelerator, which consists of an injector, a transport line and accelerator stages. This research work focuses on the modelling of the injector using the PIC code Warp and on the numerical methods such as the Lorentz-boosted frameto speedup calculations and the Perfectly Matched Layer (PML) to ensure the precision in numerical calculations. The outcome of this thesis has demonstrated the efficiency of the PML in the high-order FDTD and the pseudo-spectral solvers. Besides, it has also demonstrated the convergence of the results performed in simulations using the Lorentz-boosted frame technique. This technique speeds up simulations by a large factor (36) while preserving their accuracy. The modelling work in this thesis has allowed analysis and understanding of experimental results, as well as prediction of results for future experiments. This thesis has also shown ways to optimize the injector to deliver an electron bunch that conforms with the specifications of future accelerators.
|
2 |
Étude des rayonnements Bétatron et Compton dans l'accélération d'électrons par sillage laser. / Study of the Betatron and Compton X-ray sources produced in laser wakefield acceleration of electrons.Ferri, Julien 25 November 2016 (has links)
Une impulsion laser ultra-courte et ultra-intense se propageant dans un gaz de faible densité est capable d'accélérer une partie des électrons de ce gaz à des énergies relativistes, de l'ordre de quelques centaines de MeV, sur des distances de seulement quelques millimètres. Pendant leur accélération et dû à leur mouvement transverse, ces électrons émettent de plus un rayonnement X fortement collimaté et dirigé vers l'avant appelé rayonnement bétatron. Les caractéristiques de cette source la rendent intéressante pour son utilisation en imagerie à ultra-haute résolution.Dans ce manuscrit, nous explorons trois axes de travail autour de cette source à l'aide de simulations réalisées avec les codes Particle-In-Cell CALDER et CALDER-Circ. Nous commençons ainsi par étudier la création d'une source bétatron avec des impulsions laser de durée picoseconde et d'énergie kilojoule, donc plus longues et plus puissantes que celles habituellement utilisées par la communauté. Nous montrons que malgré les paramètres inhabituels de ces impulsions lasers il est toujours possibles de générer des sources X, et ce dans deux régimes différents.Ensuite, afin de comprendre une partie des différences généralement observées entre expériences et simulations, nous montrons dans une autre étude que l'utilisation dans les simulations de profils lasers réalistes au lieu de profils parfaitement Gaussiens dégrade fortement les performances de l'accélérateur laser-plasma et de la source bétatron. De plus, ceci conduit à un meilleur accord qualitatif et quantitatif avec l'expérience.Enfin nous explorons plusieurs techniques pour augmenter l'émission X basées sur une manipulation des profils de plasmas utilisés pour l'accélération. Nous trouvons que l'utilisation d'un gradient transverse ou d'une marche de densité conduisent tous deux à une augmentation de l'amplitude du mouvement transverse des électrons, et donc de l'énergie émise par la source bétatron. Alternativement, nous montrons que cet objectif peut-être atteint par la transition d'un régime de sillage laser vers un régime d'accélération par sillage plasma induit par une augmentation de la densité. L'accélération des électrons est optimisée dans le premier régime, tandis que l'émission X est fortement favorisée dans le second. / An ultra-short and ultra-intense laser pulse propagating in a low-density gas can accelerate in its wake a part of the electrons ionized from the gas to relativistic energies of a few hundreds of MeV over distances of a few millimeters only. During their acceleration, as a consequence of their transverse motion, these electrons emit strongly collimated X-rays in the forward direction, which are called betatron radiations. The characteristics of this source turn it into an interesting tool for high-resolution imagery.In this thesis, we explore three different axis to work on this source using simulations on the Particles-In-Cells codes CALDER and CALDER-Circ. We first study the creation of a betatron X-ray source with kilojoule and picosecond laser pulses, for which duration and energy are then much higher than usual in this domain. In spite of the unusual laser parameters, we show that X-ray sources can still be generated, furthermore in two different regimes.In a second study, the generally observed discrepancies between experiments and simulations are investigated. We show that the use of realistic laser profiles instead of Gaussian ones in the simulations strongly degrades the performances of the laser-plasma accelerator and of the betatron source. Additionally, this leads to a better qualitative and quantitative agreement with the experiment.Finally, with the aim of improving the X-ray emission, we explore several techniques based on the manipulation of the plasma density profile used for acceleration. We find that both the use of a transverse gradient and of a density step increases the amplitude of the electrons transverse motions, and then increases the radiated energy. Alternatively, we show that this goal can also be achieved through the transition from a laser wakefield regime to a plasma wakefield regime induced by an increase of the density. The laser wakefield optimizes the electron acceleration whereas the plasma wakefield favours the X-ray emission.
|
Page generated in 0.4576 seconds