• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de l'interactionentre le vent solaire et la magnetosphere de la Terre: Modele theorique et Application sur l'analyse de donnees de l'evenement du Halloween d'octobre 2003

Baraka, Suleiman 21 March 2007 (has links) (PDF)
Une nouvelle approche, en utilisant un 3D code électromagnétique (PIC), est présentée pour étudier la sensibilité de la magnétosphère de la terre à la variabilité du vent solaire. Commençant par un vent solaire empiétant sur une terre magnétisée, le temps a été laissé au système ainsi une structure d'état d'équilibre de la magnétosphère a été atteinte. Une perturbation impulsive a été appliquée au système par changeant la vitesse du vent solaire pour simuler une dépression en sa pression dynamique, pour zéro, au sud et du nord du champ magnétique interplanétaire(IMF). La perturbation appliquée, un effet de trou d'air qui pourrait être décrit comme espace ~15Re est formé pour tous les cas d'état de IMF. Dès que le trou d'air a frappé le choc d'arc initial de la magnétosphère régulière, une reconnexion entre le champ magnétique de la terre et le IMF sud a été notée à la coté jour magnétopause(MP). Pendant la phase d'expansion du système, la frontière externe de la coté jour du MP a enfoncé quand IMF=0, et pourtant elle sa forme de balle quand un IMF au sud et nordique étaient inclus. La relaxation de temps du MP pour les trois cas de IMF a été étudiée. Le code est alors appliqué pour étudier l'événement d'Halloween de l'octobre 2003. Notre simulation a produit un nouveau genre de trou d'air, un espace raréfié qui a été produit après un gradient fort en IMF d'empiétement. Un tel dispositif est tout à fait semblable aux anomalies chaudes observées d'écoulement et peut avoir la même origine
2

Modélisation d'un injecteur laser-plasma pour l'accélération multi-étages / Modelling of a laser-plasma injector for multi-stage acceleration

Lee, Patrick 11 July 2017 (has links)
L’accélération par sillage laser (ASL) repose sur l’interaction entre un faisceau laser intense et un plasma sous-dense. Au travers de cette interaction, une onde de plasma est générée avec un fort champ accélérateur, de trois ordres de grandeur plus élevé que celui d’un accélérateur conventionnel, rendant envisageable la réalisation d’accélérateurs futurs plus compacts. Pour la conception d’un futur accélérateur, un faisceau d’électrons de forte charge, faible dispersion en énergie et faible émittance doit être accéléré à des grandes énergies. Pour ce faire, la solution consiste à accélérer ces électrons dans un schéma multi-étages, qui est composé de trois étages: un injecteur, une ligne de transport et un accélérateur. Ce travail de thèse porte sur la modélisation de l’injecteur avec le code PIC Warp et sur les méthodes numériques telles que la technique de Lorentz-boosted frame pour diminuer le temps de calcul et la couche absorbante parfaite de Bérenger (PML) pour assurer la précision des calculs numériques. Ce travail de thèse a démontré l’efficacité de la PML dans les schémas FDTD à des ordres élevés et pseudo-spectral. Il a aussi démontré la convergence des résultats des simulations réalisées avec la technique de Lorentz-boosted frame dans un régime fortement non-linéaire de l’injecteur, permettant d’accélérer les calculs d’un facteur important (36) tout en assurant leur précision. La modélisation effectuée dans cette thèse a permis d’analyser et de comprendre les résultats expérimentaux, ainsi que de prédire les résultats des futures expériences. Plusieurs méthodes d’optimisation de l’injecteur ont également été proposées pour la génération d’un faisceau d’électrons conforme aux spécifications d’un futur accélérateur. / Laser Wakefield Acceleration (LWFA) relies on the interaction between an intense laser pulse and an under-dense plasma. This interaction generates a plasma wave with a strong accelerating field, which is three orders of magnitude higher than the one of the conventional accelerator; more compact accelerator is therefore theoretically possible. In the design of a future accelerator, a high quality electron bunch with a high charge, low energy spread and low emittance has to be accelerated to high energies. A solution for this is a multi-stage accelerator, which consists of an injector, a transport line and accelerator stages. This research work focuses on the modelling of the injector using the PIC code Warp and on the numerical methods such as the Lorentz-boosted frameto speedup calculations and the Perfectly Matched Layer (PML) to ensure the precision in numerical calculations. The outcome of this thesis has demonstrated the efficiency of the PML in the high-order FDTD and the pseudo-spectral solvers. Besides, it has also demonstrated the convergence of the results performed in simulations using the Lorentz-boosted frame technique. This technique speeds up simulations by a large factor (36) while preserving their accuracy. The modelling work in this thesis has allowed analysis and understanding of experimental results, as well as prediction of results for future experiments. This thesis has also shown ways to optimize the injector to deliver an electron bunch that conforms with the specifications of future accelerators.
3

Etude expérimentale des champs magnétiques en surface d'une cible irradiée par laser et leurs implications sur le faisceau d'électrons / Experimental study of on-surface magnetic field generated by high intensity laser and its implication on the fast electron beam

Forestier-Colleoni, Pierre 10 March 2016 (has links)
Cette thèse porte sur la caractérisation des champs magnétiques générés par l'interaction entre un laser d'intensité de 1017 W/cm2 à 1018 W/cm2 et de cibles solides, et leurs effets sur le faisceau d'électrons chauds. En effet, les différents champs magnétiques créés lors de cette interaction ont un rôle fondamental sur les caractéristiques du faisceau d'électrons chauds : sa source et son transport dans la matière. Des diagnostics de polarimétrie et d'interférométrie croisée ont été développés lors de cette thèse pour observer le champ magnétique en surface de la cible irradiée par laser et en particulier leurs évolutions spatiale et temporelle. Deux différents régimes ont été observés selon le contraste en intensité de l'impulsion laser : un possédant une montée rapide de champ magnétique suivie d'une décroissance plus lente créées par le déplacement des électrons chauds dans la matière, et un possédant une croissance plus lente de forme logarithmique créée par la pré-impulsion du laser par effet thermoélectrique. L'interprétation de nos résultats obtenues par ces diagnostics ont permis d'évaluer la résistivité du plasma. Cette résistivité nommée anormale dans la littérature se comprend en estimant l'influence du champ magnétique sur l'anisotropie du transport des électrons et donc sur la résistivité. Le dernier diagnostic permettant l'estimation du champ magnétique détaillé dans cette thèse est la déflectométrie protonique. Elle permet d'observer la déviation d'un faisceau de protons lors de sa propagation sous l'effet de champs électrique et magnétique. D'autres expériences se sont focalisées sur la divergence de ce faisceau d'électrons. Deux diagnostics principaux ont été utilisés : l'imagerie K α et l'imagerie du rayonnement de transition cohérente (C.T.R.) en face arrière de cibles. / This thesis concerns magnetic fields, generated by the interaction between strong laser pulse (intensity up to1018 W/cm2) and solid target, and their effects on the fast electron beam. Indeed, the various magnetic fields created during this interaction can inuence the divergence of the fast electron beam. The magnetic field createdduring this interaction have a fundamental role on the fast electron beam characteristics : its source and its transportin the material. Diagnotics of polarimetry and crossed interferometry were developed during this thesis to observethe on-surface magnetic field of the target, and in particular, their spatial and temporal evolutions. Two types oftemporal evolution of the magnetic field were observed according to the contrast in intensity of the laser pulse : afast rise of magnetic field followed by a slower decrease created by the travel of the fast electrons in the material,and a slower growth of logarithmic form created by the pre-pulse of the laser by thermoelectric effect. The interpretation of our results obtained by these diagnotics allowed us to estimate the resistivity of the plasma.This resistivity named "anomalously high resistivity" in the literature can be explained by taking into account theinuence of the magnetic field on the electrons transport (creation of an anisotropy) and thus on the resitivity.The last diagnotic allowing the estimation of the magnetic field detailed in this thesis is the proton deectometry. itallows to observe the deviation of a proton beam during its propagation under the inuence of electric and magneticfields. Other experiments were focused on the fast electron beam divergence. Two main diagnotics were used : the K α imaging and the coherent transition radiation (C.T.R) imaging at the rear side of solid targets. These diagnoticsallowed to estimate the fast electron beam divergence for two distinct energetic electron populations. The differenceof divergence coming from characteristics of both diagnotics (electrons in charge of the emissions in different energies). The diagnotics of on-surface magnetic fields of target irradiated by intense laser, such as the technics of polarimetry and crossed interferometry developed in this thesis, are dedicated to be combined with diagnotics determining the evolution of the radial size of the fast electron beam generated by the laser-matter interaction. Their simultaneous use, and the correlation between their respective data, should allow to establish experimentally, in the short term, the inuence of the on-surface magnetic fields on the fast electron beam initial characteristics, in particular the angular and energy distributions. Our results of polarimetry on the spatio-temporal evolution of the magnetic fields of surface establish the state of the art for this type of measures. There are possible improvements, in particular as regards their use in conditions of irradiation by lasers of intensities > 1018 W/cm2. These perspectives are also the object of discussions in this manuscript.
4

Étude expérimentale du transport d'électrons rapides dans le cadre de l'allumage rapide pour la fusion inertielle

Vauzour, Benjamin 08 March 2012 (has links)
Cette thèse s'inscrit dans le cadre de la recherche sur la fusion nucléaire par confinement inertiel, et vise notamment à contribuer à la validation du schéma d'allumage rapide. Elle consiste en une étude expérimentale des différents processus impliqués dans la propagation d'un faisceau d'électrons relativistes, produit par une impulsion laser ultra-intense (10^{19} W.cm-2), au sein de la matière dense qu'elle soit solide ou comprimée. Dans ce travail de recherche nous présentons les résultats de trois expériences réalisées sur des installations laser distinctes afin de générer des faisceaux d'électrons dans diverses conditions et d'étudier leur propagation dans différents états de la matière, du solide froid au plasma dense et tiède.La première expérience a été réalisée à très haut contraste temporel sur l'installation laser UHI100 du CEA de Saclay. L'étude du dépôt d'énergie par le faisceau d'électrons dans l'aluminium solide a mis en évidence un important chauffage à faible profondeur, où les effets collectifs sont prédominants, générant ainsi un gradient important de température entre les faces avant (300eV) et arrière (20eV) sur 20µm d'épaisseur. Une modélisation numérique de l'expérience montre que ce gradient induit la formation d'une onde de choc débouchant en face arrière, donnant alors lieu à une augmentation de l'émission thermique. La chronométrie expérimentale du débouché du choc permet de valider le modèle de transport collectif des électrons.Deux autres expériences ont porté sur l'étude de la propagation de faisceaux d'électrons rapides au sein de cibles comprimées. Lors de la première expérience sur LULI2000 (LULI), la géométrie de compression plane a permis de dissocier de manière précise les pertes d'énergie liées aux effets résistifs de celles liées aux effets collisionnels. En comparant nos résultats expérimentaux à des simulations, nous avons mis en évidence l'augmentation significative des pertes d'énergie du faisceau d'électrons avec la compression et le chauffage de la cible à des température proches de la température de Fermi, et ce, pour les deux mécanismes. La seconde expérience, réalisée en géométrie cylindrique sur Vulcan (RAL), a permis de mettre en évidence un phénomène de guidage du faisceau d'électrons rapides sous l'effet d'un intense champ magnétique, auto-généré en présence d'importants gradients radiaux de résistivité. Par ailleurs, dans les conditions de température et de densité atteintes, l'augmentation des pertes d'énergie collisionnelles avec la densité s'avère être compensée par une diminution des pertes résistives du fait du passage de la conductivité du milieu dans le régime des hautes températures de Spitzer. / The framework of this PhD thesis is the validation of the fast ignition scheme for the nuclear fusion by inertial confinement. It consists in the experimental study of the various processes involved in fast electron beams propagation, produced by intense laser pulses (10^{19} W.cm-2), through dense matter either solid or compressed. In this work we present the results of three experiments carried out on different laser facilities in order to generate fast electron beams in various conditions and study their propagation in different states of matter, from the cold solid to the warm and dense plasma.The first experiment was performed with a high intensity contrast on the UHI100 laser facility (CEA Saclay). The study of fast electron energy deposition inside thin aluminium targets highlights a strong target heating at shallow depths, where the collectivs effects are predominant, thus producing a steep temperature profile between front (300eV) and rear (20eV) sides over 20µm thickness. A numerical simulation of the experiment shows that this temperature gradient induces the formation of a shock wave, breaking through the rear side of the target and thus leading to increase the thermal emission. The experimental chronometry of the shock breakthrough allowed validating the model of the collective transport of electrons.Two other experiments were dedicated to the study of fast electron beam propagation inside compressed targets. In the first experiment on the LULI2000 laser facility, the plane compression geometry allowed to precisely dissociate the energy losses due to resistive effects from those due to the collisional ones. By comparing our experimental results with simulations, we observed a significative increase of the fast electron beam energy losses with the compression and the target heating to temperatures close to the Fermi temperature. The second experiment, performed in a cylindrical geometry, demonstrated a fast electron beam guiding phenomenon due to self-generated magnetic fields in presence of sharp radial resistivity gradients. Furthermore, in the temperature and density conditions achieved here, the increase of collisional energy losses with density is compensated by the decreasing resistive energy losses due to the transition of the conductivity into the high-temperatures Spitzer regime.

Page generated in 0.0414 seconds