• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 6
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Innovative Shear Connections for the Accelerated Construction of Composite Bridges

Chen, Yu-Ta January 2013 (has links)
Accelerated bridge construction methods are being progressively used to construct and replace bridges in North America. Unlike traditional bridge construction methods, accelerated bridge construction methods allow bridges to be built in a shortened period of time on the construction site. These methods reduce the road closure time and the traffic disruption that are associated with bridge construction. One of these methods is carried out by prefabricating the bridge elements offsite and then assembling them onsite in a time-efficient way to build the bridge. This construction method can be used to build steel-precast composite bridges, where steel plate girders are connected to full-depth precast concrete deck panels. For the expeditious construction of composite bridges, a proper shear connection detail is needed to develop composite action between the steel plate girders and the precast concrete deck panels. This research project investigated two types of shear connection that would accelerate the construction of steel-precast composite bridges. First, finite element analysis was used to study the behaviour of composite bridge girders with panel end connections. The girders were analyzed for their load-displacement behaviour, cross-sectional stress and strain profile, and connection force distributions. Secondly, experimental push tests were conducted to study the load-slip behaviour of bolted connections. The effects of steel-concrete interface condition, bolt diameter and bolt tension on the shear capacity of bolted connections were analyzed. Based on the finite element analysis results, it is concluded that the panel end connected girder exhibited strong composite action at service and ultimate load. The level of composite action decreased slightly when the panel end connection stiffness was reduced by a factor of ten. Based on the experimental results, it is concluded that the total shear capacity of the bolted connection is the sum of the friction resistance and the bolt dowel action resistance. The friction resistance of the connection depends on the interface condition and the bolt clamping force. An analytical model that can predict the ultimate shear capacity of bolted connections has been developed and recommended. The proposed model is shown to give reliable predictions of the experimental results. It should be noted that bolted connections exhibit good structural redundancy because the bolt fracture failures do not happen simultaneously.
2

Shear Connections for the Development of a Full-Depth Precast Concrete Deck System

Henley, Matthew D. 2009 May 1900 (has links)
A full-depth precast concrete deck system presents several safety, timeline, and cost benefits to the process of constructing a bridge, however the relevant professional codes do not provide dependable design models due to the limited amount of research conducted on the subject. One area lacking design direction is the development of a shear connection between the full-depth precast deck and a precast concrete girder via a pocket-haunch-connector system. Push-off tests are performed to investigate the effects of various pre- and post-installed shear connectors, haunch height, surface roughness, grouping effects, and grout composition as compared to cast-in-place specimens. The experimental results are presented along with a method for normalizing the variations of results by connection yield strength. This method is used to evaluate each connector type and connection parameter investigated. Ensuring sufficient shear reinforcement within the beam near the shear connector anchorage is found to be a vital aspect of holistic design. A simplified design procedure is outlined, the design connection forcedisplacement behavior is shown, and an example problem is solved. Recommendations for additions and modifications to current code and practice are prescribed.
3

Innovative Shear Connections for the Accelerated Construction of Composite Bridges

Chen, Yu-Ta January 2013 (has links)
Accelerated bridge construction methods are being progressively used to construct and replace bridges in North America. Unlike traditional bridge construction methods, accelerated bridge construction methods allow bridges to be built in a shortened period of time on the construction site. These methods reduce the road closure time and the traffic disruption that are associated with bridge construction. One of these methods is carried out by prefabricating the bridge elements offsite and then assembling them onsite in a time-efficient way to build the bridge. This construction method can be used to build steel-precast composite bridges, where steel plate girders are connected to full-depth precast concrete deck panels. For the expeditious construction of composite bridges, a proper shear connection detail is needed to develop composite action between the steel plate girders and the precast concrete deck panels. This research project investigated two types of shear connection that would accelerate the construction of steel-precast composite bridges. First, finite element analysis was used to study the behaviour of composite bridge girders with panel end connections. The girders were analyzed for their load-displacement behaviour, cross-sectional stress and strain profile, and connection force distributions. Secondly, experimental push tests were conducted to study the load-slip behaviour of bolted connections. The effects of steel-concrete interface condition, bolt diameter and bolt tension on the shear capacity of bolted connections were analyzed. Based on the finite element analysis results, it is concluded that the panel end connected girder exhibited strong composite action at service and ultimate load. The level of composite action decreased slightly when the panel end connection stiffness was reduced by a factor of ten. Based on the experimental results, it is concluded that the total shear capacity of the bolted connection is the sum of the friction resistance and the bolt dowel action resistance. The friction resistance of the connection depends on the interface condition and the bolt clamping force. An analytical model that can predict the ultimate shear capacity of bolted connections has been developed and recommended. The proposed model is shown to give reliable predictions of the experimental results. It should be noted that bolted connections exhibit good structural redundancy because the bolt fracture failures do not happen simultaneously.
4

Structural Performance of a Full-Depth Precast Concrete Bridge Deck System

Mander, Thomas 2009 August 1900 (has links)
Throughout the United States accelerated bridge construction is becoming increasingly popular to meet growing transportation demands while keeping construction time and costs to a minimum. This research focuses on eliminating the need to form full-depth concrete bridge deck overhangs, accelerating the construction of concrete bridge decks, by using full-depth precast prestressed concrete deck panels. Full-depth precast overhang panels in combination with cast-in-place (CIP) reinforced concrete are experimentally and analytically investigated to assess the structural performance. Experimental loaddeformation behavior for factored AASHTO LRFD design load limits is examined followed by the collapse capacity of the panel-to-panel seam that exists in the system. Adequate strength and stiffness of the proposed full-depth panels deem the design safe for implementation for the Rock Creek Bridge in Fort Worth, Texas. New failure theories are derived for interior and exterior bridge deck spans as present code-based predictions provide poor estimates of the ultimate capacity. A compound shear-flexure failure occurs at interior bays between the CIP topping and stay-in-place (SIP) panel. Overhang failure loads are characterized as a mixed failure of flexure on the loaded panel and shear at the panel-to-panel seam. Based on these results design recommendations are presented to optimize the reinforcing steel layout used in concrete bridge decks.
5

Short-term and time-dependent stresses in precast network arches

Yousefpoursadatmahalleh, Hossein 17 September 2015 (has links)
Due to their structural efficiency and architectural elegance, concrete arches have long been used in bridge applications. However, the construction of concrete arches requires significant temporary supporting structures, which prevent their widespread use in modern bridges. A relatively new form of arch bridges is the network arch, in which a dense arrangement of inclined hangers is used. Network arches are subjected to considerably smaller bending moments and deflections than traditional arches and are therefore suitable for modern, accelerated construction methods in which the arches are fabricated off-site and then transported to the bridge location. However, service-level stresses, which play a critical role in the performance of the structure, are relatively unknown for concrete network arches and have not been sufficiently investigated in the previous research on concrete arches. The primary objective of this dissertation is to improve the understanding of short-term and time-dependent stresses in concrete arches, and more specifically, concrete network arches. The research presented herein includes extensive field monitoring of the West 7th Street Bridge in Fort Worth, Texas, which is the first precast network arch bridge and probably the first concrete network arch bridge in the world. The bridge consists of twelve identically designed concrete network arches that were precast and post-tensioned before they were transported to the bridge site and erected. A series of vibrating wire gages were embedded in the arches and were monitored throughout the construction and for a few months after the bridge was opened to traffic. The obtained data were processed, and structural response parameters were evaluated to support the safe construction of the innovative arches, identify their short-term and time-dependent structural behavior, and verify the modeling assumptions. The variability of stresses among the arches was also used to assess the reliability of stress calculations. The results of this study provide valuable insight into the elastic, thermal, and time-dependent behavior of concrete arches in general and concrete network arches in particular. The knowledge gained in this investigation also has broader applications towards understanding the behavior of indeterminate prestressed concrete structures that are subjected to variable boundary conditions and thermal and time-dependent effects.
6

Behaviour of ultra-high performance concrete as a joint-fill material for precast bridge deck panels subjected to negative bending

Amorim, David Rodrigues Coelho 11 January 2016 (has links)
This thesis investigates the behaviour of UHPC as a fill material for precast deck panels subjected to negative bending. Two full-scale test specimens were constructed. The transverse joints between the panels, the shear pockets, and the deck haunches were all filled with UHPC. A total of four tests were performed including two static tests to failure and two fatigue tests, one of which was performed to failure. Testing consisted of a loading apparatus acting upwards on the deck soffit in an attempt to impose tensile stresses across the transverse joints, representing the conditions that a transverse joint in the negative moment region of a continuous bridge deck would experience. It was concluded that the transverse UHPC joint performed satisfactorily by transferring bending stresses and shear stresses across the joint from one panel to the adjacent panel. Overall, the test specimens displayed performance levels expected from conventional cast-in-place concrete deck alternatives. / February 2016
7

Categorizing Accelerated Bridge Construction Projects for Improving Decision-Making

Linares Garcia, Daniel Antonio 23 August 2018 (has links)
Accelerated Bridge Construction, also known as ABC, is a methodology that seeks to improve project development of bridges by reducing the overall project schedule and the impact on the traveling public by implementing innovative technologies and strategies in any phase of project development. However, ABC may incur additional direct costs for the project and some risks are associated because of the accelerated constraints implied in this methodology. On the positive side, the opportunity costs and reductions of traffic disruptions costs may overcome the additional costs associated with ABC. Decision-making methodologies for assessment of ABC as an alternative to traditional construction are of great interest for project developers. The topics of research about ABC are diverse but focus mainly on the means and methods, technical aspects, applications, innovations, and decision-making of ABC. Decision-making is of great concern for project developers, especially government organizations, to sustain project goals of serviceability and to validate the additional expenditures in a project. In addition, project developers improve their decisions and project outcomes by reviewing success and failure cases for completed projects in the past. This study seeks to improve the decision-making processes in ABC by finding a more direct correlation of projects to compare by means of a categorization of these ABC projects. Smaller groups in this categorization will help narrow the scope of the characteristics of the projects to consider and to find more relevant lessons learned from the smaller groups of the categorization. To develop the categorization in this study, the data source used is the completed ABC projects database from the Federal Highway Administration (FHWA). The statistical categorization methodology for this study is the Agglomerate Hierarchy Clustering which developed a determined number of cluster based on the closeness among data parameters with "n" number of dimensions of analysis. The number of dimensions for the analysis in this study was established as 13 parameters collected from the database and these were considered critical decision-making parameters and consequential parameters to reflect project decisions and consequences of those decisions. The results of this study rendered 3 categories, and into these categories, 5 sub-categories were distributed according to the same analysis developed. The sub-categories show similarities between the projects according to the parameters established, so the sub-categories help narrow the scope of projects for project developers. As a complement to the categorization, a project matching tool for external projects was also developed to help decision-makers to test their projects according to the analysis in this study and also help developers narrow their review of cases in search for lessons learned. Uses of this study include the prediction of information of parameters according to the variables and ranges in this categorization, and the narrowing of study cases to review. Stakeholders interested can be government organizations seeking to establish the viability of an ABC project, or to improve their project outcomes at any stage of development. Other stakeholders can be designers and contractors that also need to improve their projects at any stage of development. / Master of Science / Accelerated Bridge Construction (ABC) reduces construction time and diminishes traffic disruption by applying strategies and innovations to the way bridges are designed and constructed. However, it implies additional initial costs that need to be justified. Project developers need to evaluate their projects to make decisions to assure the best execution and outcomes. The review of lessons learned from previous bridge projects has been one of the sources that developers have found to find strategies and tips to implement best practices or to avoid mistakes during planning and construction of new bridge projects. This study relies on the lessons learned compiled on the completed ABC project database from the federal transportation authority, the Federal Highway Administration (FHWA), in order to help developers, narrow the scope of projects to be reviewed and find more relevant cases to compare their projects. This scope includes the development of a categorization or a structured hierarchy of completed ABC projects with the FHWA database by applying a statistical analysis and a validation procedure. The results of this study rendered a categorization with 3 categories and 5 subcategories, each with its definition of parameters, which highlight the similarities among projects in the same groups and the differences among different categories. In addition, a framework was developed to match external projects with the categorization in this study to help project developers narrow the projects to review, or even predict missing information according to the parameters in this study. These results may help decision-makers better inform their decisions and support the research in the field of study.
8

Recommendations for Surface Treatment for Virginia Inverted T-Beam Bridge System

Gilbertson, Rebecka Lynn 20 June 2018 (has links)
This thesis investigates the impact of interface surface treatment methods for use in the Virginia Inverted T-Beam bridge system. The specific system consists of precast beams with thin bottom flanges placed next to one another, with a cast-in-place slab on top. Previous research has shown that the strength of this system after cyclic loading is highly dependent upon the shear strength of the interface between the precast and cast-in-place sections, especially for the adhesion-based connection configuration. The approval of this bridge system for use in bridges with high daily traffic volumes hinges on the verification of its strength and durability for a 50-year lifespan. The shear strength of ten different surface textures was tested using push-off tests to determine which interface roughening methods would prove adequate for use in the bridge system. The strength was found to depend on both the amplitude and the geometry of the undulations on the beam-to-slab interface. Using this information, a texture was selected for a new trial of the adhesion-based connection configuration, and a test specimen was constructed. After completing cyclic loading to simulate the design life of the bridge, it was found that the system achieved a strength similar to previous monotonically loaded specimens. It was concluded that the bridge is safe for use in high daily traffic areas provided that a surface roughening with adequate shear strength is used. / Master of Science
9

Finite Element Modeling of Transverse Post-Tensioned Joints in Accelerated Bridge Construction

Madireddy, Sandeep Reddy 01 May 2012 (has links)
The Accelerated bridge construction (ABC) techniques are gaining popularity among the departments of transportation (DOTs) due to their reductions of on-site construction time and traffic delays. One ABC technique that utilizes precast deck panels has demonstrated some advantages over normal cast-in-place construction, but has also demonstrated some serviceability issues such as cracks and water leakage to the transverse joints. Some of these problems are addressed by applying longitudinal prestressing. This thesis evaluates the service and ultimate capacities in both flexure and shear, of the finite element models of the post-tensioned system currently used by Utah Department of Transportation (UDOT) and a proposed curved-bolt system to confirm the experimental results. The panels were built and tested under negative moment in order to investigate a known problem, namely, tension in the deck concrete. Shear tests were performed on specimens with geometry designed to investigate the effects of high shear across the joint. The curved-bolt connection not only provides the necessary compressive stress across the transverse joint but also makes future replacement of a single deck panel possible without replacing the entire deck. Load-deflection, shear-deflection curves were obtained using the experimental tests and were used to compare with the values obtained from finite element analysis. In flexure, the ultimate load predicted by the finite element model was lower than the experimental ultimate load by 1% for the post-tensioned connection and 3% for the curved-bolt connection. The shear models predicted the ultimate shear reached, within 5% of the experimental values. The cracking pattern also matched closely. The yield and cracking moment of the curved-bolt connection predicted by the finite element model were lower by 13% and 2%, respectively, compared to the post-tensioned connection in flexure.
10

Refinement of the Inverted T-Beam Bridge System for Virginia

Arif Edwin, Ezra Bin 01 August 2017 (has links)
The inverted T-beam bridge system is a bridge construction technique that follows accelerated bridge construction processes. The system was discovered in France and first adopted in the U.S. by the Minnesota Department of Transportation. In 2012 the system was modified and adopted by Virginia, with research being carried out at Virginia Polytechnic Institute and State University (Virginia Tech). The research focused on multiple items involving the system, but the most relevant one is that regarding the transverse bending behavior of the system for different geometries, and joint types between adjacent precast beam members. The study found that using a joint system without any mechanical connection between adjacent beams was most efficient, and gave adequate performance under monotonic loading. The study recommended cyclic load testing be carried out on this joint type, as well as a welded joint similar to those found in decked bulb-T systems. The research contained herein presents the setup and results of this testing. From the work it was found that the no-connection joint behaves adequately under cyclic loading at service loads, however surface roughening between precast and cast-in-place concrete must be adequate. The welded connection behaves well, granted the surfaces to be welded are properly prepared. From these results it is recommended to evaluate different surface roughening techniques, and repeat the cyclic testing using the best. The surface roughening technique chosen should be used to provide guidance on this aspect of construction with inverted T-beams. / Master of Science

Page generated in 0.1139 seconds