Spelling suggestions: "subject:"inverted"" "subject:"invertedor""
1 |
Design criteria for strength and serviceability of inverted-T straddle bent capsFernandez Gomez, Eulalio, 1981- 25 October 2012 (has links)
Several recently built inverted-T bent caps in Texas have shown significant inclined cracking triggering concern about current design procedures for such structures. The repair of such structures is very costly and often requires lane closures. For these reasons TxDOT funded Project 0-6416 aimed at obtaining a better understanding of the structural behavior of inverted-T bent caps and developing new design criteria to minimize such cracking in the future. Several tasks of the aforementioned project are addressed in this dissertation with particular focus on developing design criteria for strength and serviceability of inverted-T bent caps.
Literature review revealed a scarcity of experimental investigation of inverted-T specimens. As part of this dissertation, an inverted-T database was assembled with experimental results from the literature and the current project. An extensive experimental program was completed to accomplish the objectives of the project with thirty one full-scale tests conducted on inverted-T beams. Experimental parameters varied in the study were: ledge length, ledge depth, web reinforcement, number of point loads, web depth, and shear span-to-depth ratio. The dissertation focuses on the effects of ledge length, ledge depth, number of point loads, and developing design criteria for strength and serviceability of inverted-T beams.
Most inverted-T bent caps in Texas are designed using the traditional empirical design procedures outlined in the TxDOT bridge design manual LRFD (2011 current version) that follows closely the AASHTO LRFD bridge design specifications (2012 current version). Given the observed cracking in inverted-T bent caps, the accuracy and conservatism of the traditional design methods were evaluated based on experimental results. The accuracy and conservatism of STM design provisions recently developed in a TxDOT study (TxDOT Project 0-5253, Strength and Serviceability Design of Reinforced Concrete Deep Beams) were also evaluated. / text
|
2 |
Strut-and-tie model design examples for bridgeWilliams, Christopher Scott 16 February 2012 (has links)
Strut-and-tie modeling (STM) is a versatile, lower-bound (i.e. conservative) design method for reinforced concrete structural components. Uncertainty expressed by engineers related to the implementation of existing STM code specifications as well as a growing inventory of distressed in-service bent caps exhibiting diagonal cracking was the impetus for the Texas Department of Transportation (TxDOT) to fund research project 0-5253, D-Region Strength and Serviceability Design, and the current implementation project (5-5253-01). As part of these projects, simple, accurate STM specifications were developed. This thesis acts as a guidebook for application of the proposed specifications and is intended to clarify any remaining uncertainties associated with strut-and-tie modeling. A series of five detailed design examples feature the application of the STM specifications. A brief overview of each design example is provided below. The examples are prefaced with a review of the theoretical background and fundamental design process of STM (Chapter 2).
• Example 1: Five-Column Bent Cap of a Skewed Bridge -
This design example serves as an introduction to the application of STM. Challenges are introduced by the bridge’s skew and complicated loading pattern. A clear procedure for defining relatively complex nodal geometries is presented.
• Example 2: Cantilever Bent Cap -
A strut-and-tie model is developed to represent the flow of forces around a frame corner subjected to closing loads. The design and detailing of a curved-bar node at the outside of the frame corner is described.
• Example 3a: Inverted-T Straddle Bent Cap (Moment Frame) -
An inverted-T straddle bent cap is modeled as a component within a moment frame. Bottom-chord (ledge) loading of the inverted-T necessitates the use of local STMs to model the flow of forces through the bent cap’s cross section.
• Example 3b: Inverted-T Straddle Bent Cap (Simply Supported) -
The inverted-T bent cap of Example 3a is designed as a member that is simply supported at the columns.
• Example 4: Drilled-Shaft Footing -
Three-dimensional STMs are developed to properly model the flow of forces through a deep drilled-shaft footing. Two unique load cases are considered to familiarize the designer with the development of such models. / text
|
3 |
Design of reinforced concrete inverted-T beams for strength and serviceabilityLarson, Nancy Anne, 1986- 23 September 2013 (has links)
Significant diagonal cracking in reinforced concrete inverted-T straddle bent caps has been reported throughout the State of Texas. Many of the distressed structures were recently constructed and all have been in service for less than two decades. The unique nature of the problem prompted a more detailed look into the design and behavior of such structural components.
Strut-and-tie modeling is currently recommended for design of deep (rectangular) beams, but its application to more complex structures has not been fully explored. Due to concerns with current design provisions the application of strut-and-tie modeling to inverted-T beams was investigated along with serviceability-related considerations in this dissertation.
An experimental study was conducted in which thirty-three reinforced concrete inverted-T beam tests were conducted. The effects of the following variables were evaluated: ledge depth and length, quantity of web reinforcement, number of point loads, member depth, and shear span-to-depth ratio. A strut-and-tie design method proposed by Birrcher et. al (2009), initially calibrated for compression-chord loaded deep beams, was investigated. It was concluded that the strut-and-tie method was a simple and accurate design method, and it was recommended for use in inverted-T beam design. A
vi
recommendation was also made for the amount of minimum web reinforcement needed for strength and serviceability considerations. A simple service-load check was proposed for the purpose of limiting diagonal cracking under service loads. Finally, a chart was created to aid in the evaluation of distressed, diagonally-cracked inverted-T bent caps in the field. / text
|
4 |
Shear cracking in inverted-T straddle bentsGarber, David Benjamin 29 September 2011 (has links)
Significant diagonal cracking in reinforced concrete inverted-T (IT)
straddle bent caps has been reported throughout the State of Texas. Many of the distressed structures were recently constructed and have generally been in service for less than two decades. The unique nature of the problem prompted a closer look into the design and behavior of such structural components. A preliminary investigation highlighted outdated design requirements and a scarcity of
experimental investigations pertaining to inverted-T bent caps. This research project (TxDOT Project 0-6416, Shear Cracking in Inverted-T Straddle Bents) aims to improve current understanding of the behavior of inverted-T caps, while providing updated design provisions.
In order to develop strength and serviceability guidelines for inverted-T beams, an extensive experimental program was developed. This series of large scale tests was used to evaluate the strength and serviceability of IT deep beams in relation to the following parameters – shear span-to-depth (a/d) ratio, web
reinforcement ratio, ledge height, ledge length, number of point loads, and member depth. This report focuses mainly on results from a first series of tests
conducted within this experimental program. / text
|
5 |
Post-tensioning the inverted-t bridge system for improved durability and increased span-to-depth ratioNayal, Rim January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Robert J. Peterman / Possibly the most pressing need in highway construction today is the repair or replacement of existing bridges. Due to increased needs and growing traffic, in addition to aging and extensive use, more than 2000 bridges in Kansas alone need to be replaced during the next decade. The majority of these bridges has spans of 100 ft or less, and has relatively shallow profiles. It is becoming increasingly important to implement a standard method for replacement in which the process is expedited and accomplished in cost-effective manner.
Requirements for design and construction of concrete bridges have drastically changed during recent years. A main change in design is live-load requirements.
Nebraska inverted-T bridge system has gained increasing popularity for its lower weight compared to I-girder bridges. However, there are some limiting issues when using IT system in replacing existing CIP bridges.
Implementation of a post-tensioned IT system, which is the focus of this research, is believed to be one excellent solution for the IT deficiencies. Post-tensioning is added by placing a draped, post-tensioning duct in the stems of the IT members. Post-tensioning will lead to a higher span-to-depth ratio than IT system, and will reduce the potential transverse cracks in the (CIP) deck. Finally, the undesired cambers of pretensioned beams will be reduced, because fewer initial prestressing will be needed.
This study was intended to explore the behavior of the PT-IT system, identify major parameters that control and limit the design of this system, and investigate different construction scenarios. This was achieved by conducting an extensive parametric study. For that purpose, PT-IT analysis program was developed and written using C++ programming language. The program was used to analyze various post-tensioning procedures for the post-tensioned inverted-T system. A Visual Basic friendly interface was provided to simplify the data input process.
The findings of this research included recommendation of construction scenario for PT-IT system, as well as examining different methods for estimating time-dependent restraining moments. Effect of different concrete strengths on the behavior of PT-IT system was also determined. Most importantly, the effect of timing on different construction stages was also evaluated and determined.
|
6 |
Transverse Sub-Assemblage Testing of the Inverted-T Bridge SystemMercer, Matthew Sherman 18 July 2012 (has links)
The inverted-T bridge system is a rapid bridge construction technique that consists of precast inverted-T girders placed adjacent to one another and covered with a cast-in-place deck. This system was first implemented in the U.S. by the Minnesota Department of Transportation (Mn/DOT). This research focuses on improving the constructability of the Mn/DOT system while maintaining the system's structural performance characteristics. To accomplish this goal, five sub-assemblage specimens were cast and tested in the structures laboratory at Virginia Tech. These tests focused on identifying an improved precast girder geometry and transverse sub-assemblage connection for this system.
From this study it was found that all of the proposed specimens behaved adequately at service load and strength. From these results, it is recommended to further evaluate a specimen with a tapered profile and no physical connection between precast girders for use in a Virginia Department of Transportation bridge near Richmond, VA. / Master of Science
|
7 |
Refinement of the Inverted T-Beam Bridge System for VirginiaArif Edwin, Ezra Bin 01 August 2017 (has links)
The inverted T-beam bridge system is a bridge construction technique that follows accelerated bridge construction processes. The system was discovered in France and first adopted in the U.S. by the Minnesota Department of Transportation. In 2012 the system was modified and adopted by Virginia, with research being carried out at Virginia Polytechnic Institute and State University (Virginia Tech). The research focused on multiple items involving the system, but the most relevant one is that regarding the transverse bending behavior of the system for different geometries, and joint types between adjacent precast beam members. The study found that using a joint system without any mechanical connection between adjacent beams was most efficient, and gave adequate performance under monotonic loading. The study recommended cyclic load testing be carried out on this joint type, as well as a welded joint similar to those found in decked bulb-T systems.
The research contained herein presents the setup and results of this testing. From the work it was found that the no-connection joint behaves adequately under cyclic loading at service loads, however surface roughening between precast and cast-in-place concrete must be adequate. The welded connection behaves well, granted the surfaces to be welded are properly prepared. From these results it is recommended to evaluate different surface roughening techniques, and repeat the cyclic testing using the best. The surface roughening technique chosen should be used to provide guidance on this aspect of construction with inverted T-beams. / Master of Science / The inverted T-beam bridge system is a new type of bridge system intended for use in short to medium length bridges. The system was discovered in France in 2004, where a similar type was being used. It was first modified slightly, and adopted in the in Minnesota. In 2012, the system was again modified to increase its strength and its construction speed, and was then adopted in Virginia. The modifications to the system in Virginia focused on the connections between the individual units making up the bridge, and the geometry of each of these units.
The focus of this research was to quantify the long-term performance of two of the connection types currently used on bridges in Virginia. This was achieved by subjecting a test specimen to repeated loads in the laboratory at Virginia Tech. The loading used in the laboratory represented the conditions that a real bridge of this type would be subjected to.
The research showed that the two connection types performed well under the repeated loading conditions. However, it was concluded that the concrete surfaces which are in contact with one another must be properly roughened, so that the system maintains its strength.
The importance of this research is due to the fact that the large costs associated with maintaining the nation’s bridge infrastructure can be substantially reduced due to this system’s quick and simple construction. In addition to this, road users experience less disruption because of the shortened construction times.
|
8 |
Recommendations for Surface Treatment for Virginia Inverted T-Beam Bridge SystemGilbertson, Rebecka Lynn 20 June 2018 (has links)
This thesis investigates the impact of interface surface treatment methods for use in the Virginia Inverted T-Beam bridge system. The specific system consists of precast beams with thin bottom flanges placed next to one another, with a cast-in-place slab on top. Previous research has shown that the strength of this system after cyclic loading is highly dependent upon the shear strength of the interface between the precast and cast-in-place sections, especially for the adhesion-based connection configuration. The approval of this bridge system for use in bridges with high daily traffic volumes hinges on the verification of its strength and durability for a 50-year lifespan.
The shear strength of ten different surface textures was tested using push-off tests to determine which interface roughening methods would prove adequate for use in the bridge system. The strength was found to depend on both the amplitude and the geometry of the undulations on the beam-to-slab interface. Using this information, a texture was selected for a new trial of the adhesion-based connection configuration, and a test specimen was constructed. After completing cyclic loading to simulate the design life of the bridge, it was found that the system achieved a strength similar to previous monotonically loaded specimens. It was concluded that the bridge is safe for use in high daily traffic areas provided that a surface roughening with adequate shear strength is used. / Master of Science / The Virginia Inverted T-Beam bridge system was initially designed to be more durable and economical than other types of bridges. The bridge is constructed by arranging prefabricated beams side-by-side across the span before placing fresh concrete overtop. In the most economical version of the system, the only connection between the beams is the newly placed concrete. For the beams and topping to act together, the bond between them must be strong. Roughening the surface of the prefabricated beams increases the strength of the bond, although different roughening patterns achieve different levels of strength. Past tests of the bridge system have utilized inadequate roughing patterns which lead to low bridge failure loads after many loading cycles. This low-cost configuration is currently only approved for use in low daily traffic areas.
The goal of this research was to determine a roughening pattern that would result in a high bridge failure load which would allow the low-cost configuration to be approved for high daily traffic areas. Several roughening patterns were investigated and the patterns producing the highest shear strengths were determined. The best pattern was chosen to be used for the bridge configuration and a sub-section of the bridge was constructed. This specimen was subjected to a loading protocol that simulated the traffic that an actual bridge would be subjected to over its life span. The failure load was then measured and found to be high enough to warrant the use of the specific system in high daily traffic areas.
|
9 |
Development of a Composite Concrete Bridge System for Short-to-Medium-Span BridgesMenkulasi, Fatmir 23 August 2014 (has links)
The inverted T-beam bridge system provides an accelerated bridge construction alternative for short-to-medium-span bridges. The system consists of adjacent precast inverted T-beams finished with a cast-in-place concrete topping. The system offers enhanced performance against reflective cracking, and reduces the likelihood of cracking due to time dependent effects. The effects of transverse bending due to concentrated wheel loads are investigated with respect to reflective cracking. Transverse bending moment are quantified and compared to transverse moment capacities provided by a combination of various cross-sectional shapes and transverse connections. A design methodology for transverse bending is suggested. Tensile stresses created due to time dependent and temperature effects are quantified at the cross-sectional and structure level and strategies for how to alleviate these tensile stresses are proposed. Because differential shrinkage is believed to be one of the causes of deck cracking in composite bridges, a study on shrinkage and creep properties of seven deck mixes is presented with the goal of identifying a mix whose long terms properties reduce the likelihood of deck cracking. The effects of differential shrinkage at a cross-sectional level are numerically demonstrated for a variety of composite bridge systems and the resistance of the inverted T-beam system against time dependent effects is highlighted. End stresses in the end zones of such a uniquely shaped precast element are investigated analytically in the vertical and horizontal planes. Existing design methods are evaluated and strut-and-tie models, calibrated to match the results of 3-D finite element analyses, are proposed as alternatives to existing methods to aid designers in sizing reinforcing in the end zones. Composite action between the precast beam and the cast-in-place topping is examined via a full scale test and the necessity of extended stirrups is explored. It is concluded that because of the large contact surface between the precast and cast-in-place elements, cohesion alone appears to provide the necessary horizontal shear strength to ensure full composite action. Live load distribution factors are quantified analytically and by performing four live loads tests. It is concluded that AASHTO's method for cast-in-place slab span bridges can be conservatively used in design. / Ph. D.
|
10 |
Non-Contact Lap Splices in Dissimilar ConcretesGrant, James Philip 14 September 2015 (has links)
Non-contact lap splices placed within a single concrete placement are often used and have been studied in previous research projects. However, non-contact lap splices used with each bar in a different concrete placement such that there is a cold joint between the bars, have not been investigated. This situation is found in the repair of adjacent box beam bridges and in the construction of inverted T-beam systems, among others. It is vital to understand whether the same mechanisms are present across a cold joint with two different types of concrete as are present in traditional non-contact lap splices.
In this research, eight T-beam specimens with non-contact lap splices were tested. The spacing between the bars, the splice bar blockout length, and presence of transverse bars were varied to study the effectiveness of the splices. The beams were tested in four point bending so that the splice region was under constant moment and the tension forces in the spliced bars were constant. End and midspan deflections were measured along with surface strain measurements at midspan and at the quarter span points, top and bottom. Gap openings were also measured at the ends of the blockouts.
The main conclusions found from this research are that beams containing non-contact lap splices were able to develop nominal capacity with the bar spacing less than or equal to 4 in. and the blockout between 17 and 20 in. long. Extending the blockouts and adding transverse bars underneath the splices did not add to the capacity. / Master of Science
|
Page generated in 0.0488 seconds