• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 13
  • 12
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 24
  • 19
  • 19
  • 17
  • 17
  • 16
  • 15
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Performance evaluation of a prototyped wireless ground sensor networks

Tingle, Mark E. 03 1900 (has links)
This thesis investigated the suitability of wireless, unattended ground sensor networks for military applications. The unattended aspect requires the network to self-organize and adapt to dynamic changes. A wireless, unattended ground sensor network was prototyped using commercial off-the-shelf technology and three to four networked nodes. Device and network performance were measured under indoor and outdoor scenarios. The measured communication range of a node varied between three and nineteen meters depending on the scenario. The sensors evaluated were an acoustic sensor, a magnetic sensor, and an acceleration sensor. The measured sensing range varied by the type of sensor. Node discovery durations observed were between forty seconds and over five minutes. Node density calculations indicated that the prototype was scalable to five hundred nodes. This thesis substantiated the feasibility of interconnecting, self-organizing sensor nodes in military applications. Tests and evaluations demonstrated that the network was capable of dynamic adaptation to failure and degradation.
22

A micromachined pendulous oscillating gyroscopic accelerometer

Kaiser, Todd Jeffrey 05 1900 (has links)
No description available.
23

Investigation of methods to determine individualized thresholds for moderate and vigorous intensity from accelerometer measurements

Cochran, Heather L. January 2009 (has links)
Access to abstract permanently restricted to Ball State community only / Access to thesis permanently restricted to Ball State community only / School of Physical Education, Sport, and Exercise Science
24

Estimation of energy expended while swimming utilizing an omnidirectional accelerometer

Johnston, Jeanne D. January 2006 (has links)
Thesis (Ph. D.)--Indiana University, 2006. / Includes bibliographical references (leaves 261-274). Also available online (PDF file) by a subscription to the set or by purchasing the individual file.
25

Estimation of energy expended while swimming utilizing an omnidirectional accelerometer

Johnston, Jeanne D. January 2006 (has links)
Thesis (Ph.D.)--Indiana University, Dept. of Kinesiology, 2006. / Includes bibliographical references (leaves 267-274).
26

Increasing energy expenditure of cardiac rehabilitation patients

Kreshel, Leigh Anne, January 2002 (has links)
Thesis (M.S.)--Wake Forest University. Dept. of Health and Exercise Science, 2002. / Vita. Includes bibliographical references (leaves 47-53).
27

Estimating energy expenditure during exercise greater than standard daily activities using a different anatomical placement of motion detectors

Whitaker, Brent A. January 1900 (has links)
Thesis (M.S.)--University of Delaware, 2005. / Includes bibliographical references (leaves 52-54).
28

Estimating energy expenditure during exercise greater than standard daily activities using a different anatomical placement of motion detectors

Whitaker, Brent A. January 1900 (has links)
Thesis (M.S.)--University of Delaware, 2005. / Includes bibliographical references (leaves 52-54). Also available online (PDF file) by a subscription to the set or by purchasing the individual file.
29

AHRS algorithms and calibration solutions to facilitate new applications using low-cost MEMS

Madgwick, Sebastian O. H. January 2014 (has links)
Microelectromechanical System (MEMS) technology is advancing rapidly. Gyroscopes, accelerometers and magnetometers, also referred to as an Inertial Measurement Unit (IMU), has traditionally been associated with aerospace and industrial robotics but is now within every smart phone. The proliferation of these low-cost devices has facilitated countless new applications with many more still unrealised. This dissertation presents work towards this end. A significant contribution of this work was the development of novel Attitude and Heading Reference System (AHRS) algorithms that fuse together sensor data from an IMU to provide an absolute measurement of orientation relative to the Earth. The novel work presented on non-gyro IMU s demonstrated the potential practical benefits of such kinematically redundant sensor arrays. Low-cost MEMS can only be fully utilised if they are combined with a calibration solution to provide precise measurements with a determined accuracy. This dissertation presents a comprehensive calibration solution to the specific requirements of these sensors based on extensive characterisations investigations. The calibration solutions enable sensors costing <10 United States Dollar (USD) to achieve a static pitch/roll accuracy of <10 and a static heading accuracy of <2°. This performance is equivalent to commercial 1M Us costing up to 3000 USD. The AHRS algorithm and sensor calibration works were brought together in the development of three IMU hardware platforms. To date, >500 have been sold and the open-source associated algorithm downloaded> 10,000 times. Each platform addressed a specific design need and together these facilitated a wide range of new applications; demonstrated by the numerous scientific publications that resulted from collaborative projects and user projects.
30

CNT-based thermal convective accelerometer. / 基于碳纳米管的热对流加速度传感器 / Ji yu tan na mi guan de re dui liu jia su du chuan gan qi

January 2009 (has links)
Zhang, Yu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 55-60). / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Aim of Research --- p.2 / Chapter 1.3 --- Thesis Organization --- p.3 / Chapter 2 --- Literature Review --- p.4 / Chapter 2.1 --- Carbon Nanotubes in MEMS Devices --- p.4 / Chapter 2.1.1 --- CNT Integration and CNT sensors --- p.4 / Chapter 2.1.2 --- Prior Work in CMNS --- p.6 / Chapter 2.2 --- Overview of Motion Sensors --- p.7 / Chapter 2.2.1 --- Technology Overview --- p.7 / Chapter 2.2.2 --- Categories and Working Principles --- p.9 / Chapter 2.2.3 --- Application --- p.13 / Chapter 2.3 --- Thermal Convective Motion Sensors --- p.14 / Chapter 2.3.1 --- Micro Thermal Flow Sensors --- p.15 / Chapter 2.3.2 --- Research on Thermal Convective Motion Sensors --- p.17 / Chapter 2.3.3 --- Working Principle and Performances --- p.20 / Chapter 3 --- Design and Setup --- p.25 / Chapter 3.1 --- Methodology --- p.25 / Chapter 3.1.1 --- Research Method --- p.25 / Chapter 3.1.2 --- Critical Questions --- p.26 / Chapter 3.2 --- Sensor Chip Design and Fabrication --- p.27 / Chapter 3.2.1 --- Sensor Chip Mask Design --- p.27 / Chapter 3.2.2 --- Fabrication of Sensor Chip --- p.29 / Chapter 3.3 --- Sensor Prototyping --- p.30 / Chapter 3.3.1 --- CNT Deposition --- p.30 / Chapter 3.3.2 --- Sensor Building --- p.32 / Chapter 3.4 --- Setup of Experiment --- p.34 / Chapter 3.4.1 --- Source and Measure --- p.34 / Chapter 3.4.2 --- Acceleration Production --- p.35 / Chapter 4 --- Experiments and Results --- p.39 / Chapter 4.1 --- Hypotheses Verification --- p.39 / Chapter 4.1.1 --- Thermal Detection Using CNT --- p.39 / Chapter 4.1.2 --- Local Heating & Sensing --- p.40 / Chapter 4.2 --- Tilting Test --- p.42 / Chapter 4.2.1 --- Test Result --- p.42 / Chapter 4.2.2 --- Result Discussions --- p.43 / Chapter 4.3 --- Vibration Test --- p.45 / Chapter 4.3.1 --- Test Result --- p.45 / Chapter 4.3.2 --- Result Discussions --- p.52 / Chapter 5 --- Conclusion --- p.53 / Bibliography --- p.55

Page generated in 0.047 seconds