• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Energy Dissipation Caused by Asphalt Roadway Gouges for Use in Accident Reconstruction

Crosby, Charles L. 14 December 2009 (has links)
In reconstruction of on-roadway vehicle accidents, roadway surface gouges and the forces and energy attributed to the related vehicle components become important keys to resolving an accurate accident reconstruction. These roadway gouge forces vary depending upon such factors as surface temperature and the velocity and geometry of the gouging mechanism. Accounting for the forces applied to vehicle components and the energy dissipated from such forces can be helpful in accident reconstruction where supporting data exists. This research documents the force necessary to create a given roadway gouge geometry. Controlled pavement gouging tests were performed using roadway surface temperature and gouging velocity as main factors. The results of this testing and analysis are useful in quantifying gouge forces and energies for use in accident reconstruction. The findings show that the temperature of the roadway surface that is being damaged significantly affects the amount of force required to cause the damage. A summary of experiments and techniques as applied to accident reconstruction are presented.
2

Numerical Accident Reconstructions : A Biomechanical Tool to Understand and Prevent Head Injuries

Fahlstedt, Madelen January 2015 (has links)
Traumatic brain injuries (TBIs) are a major health and socioeconomic problem throughout the world, with an estimated 10 million deaths and instances of hospitalization annually. Numerical methods such as finite element (FE) methods can be used to study head injuries and optimize the protection, which can lead to a decrease in the number of injuries. The FE head models were initially evaluated for biofidelity by comparing with donated corpses experiments. However, there are some limitations in experiments of corpses, including material degradation after death. One feasible alternative to evaluating head models with living human tissue is to use reconstruction of real accidents. However, the process of accident reconstruction entails some uncertainties since it is not a controlled experiment. Therefore, a deeper understanding of the accident reconstruction process is needed in order to be able to improve the FE human models. Thus, the aim of this thesis was to evaluate and further develop more advanced strategies for accident reconstructions involving head injuries. A FE head model was used to study head injuries in accidents. Existing bicycle accident data was used, as were hypothetical accident situations for cyclists and pedestrians. A FE bicycle helmet model having different designs was developed to study the protective effect. An objective method was developed based on the Overlap Index (OI) and Location Index (LI) to facilitate the comparison of FE model responses with injuries visible in medical images. Three bicycle accident reconstructions were performed and the proposed method evaluated. The method showed to have potential to be an objective method to compare FE model response with medical images and could be a step towards improving the evaluation of results from injury reconstructions. The simulations demonstrated the protective effect of a bicycle helmet. A decrease was seen in the injurious effect on both the brain tissue and the skull. However, the results also showed that the brain tissue strain could be further decreased by modifying the helmet design. Two different numerical pedestrian models were compared to evaluate whether the more time-efficient rigid body model could be used, instead of a FE pedestrian model, to roughly determine the initial conditions as an accident reconstruction involves some uncertainties. The difference, in terms of the head impact location, rotation and velocity, attributable to the two models was in the same range as differences due to uncertainties in some of the initial parameters, such as vehicle impact velocity. / <p>QC 20150414</p>
3

Concussions in Ice Hockey : Accident Reconstructions Using Finite Element Simulations / Hjärnskakningar i ishockey : Olycksrekonstruktioner med finita element-simuleringar

Mishra, Ekant January 2019 (has links)
Ice hockey, one of the most popular sports in the world, is a contact sport that is always associated with huge risks of traumatic brain injuries (TBIs) resulting from high-velocity impacts. Although technology in player protection equipment has advanced over the years, mild traumatic brain injuries (mTBIs) like concussion remain prevalent. Finite Element (FE) analysis presents a methodology to recreate accidents in an effort to study the effects of protective helmets and predict brain injuries. This study aimed at improving the response of an existing ice hockey helmet FE model during different impact conditions and reconstructing an ice hockey collision using FE simulations. First, the shear response of the Expanded Polypropylene (EPP) material for the helmet liner was improved by means of a single element simulation to replicate the experiments. Simulations of helmet drop tests were then performed to validate the helmet FE model. Two different designs of the helmet model were implemented, one with normal properties of the foam and the other with a softer foam. Actual cases of ice hockey accidents were then reconstructed using positioning and impact velocities as input from video analysis. As player to player collisions had not been reconstructed for ice hockey using two player models, it was decided to use two full body Human Body Models (HBMs) for the reconstruction. The biomechanical injury parameters for the accident reconstruction were plotted and compared with injury thresholds for concussion. The kinematic results achieved from the drop test simulations showed a considerable decrease in peak values for resultant accelerations, resultant rotational accelerations, and resultant rotational velocities. These results also exhibited better CORrelation and Analysis (CORA) scores than previously achieved. The biomechanical analysis of the accident reconstruction showed the strains in the brain for the concussed player to be more than the threshold for concussion, which confirms the validity of the reconstruction approach. The results of this study show an improved response of the helmet FE model under different impact conditions. They also present a methodology for ice hockey accident reconstruction using two full body HBMs.
4

Development of a Hardware in the Loop Simulation System for Heavy Truck ESC Evaluation and Trailer Parameter and State Estimation

Rao, Sughosh J. 02 October 2013 (has links)
No description available.
5

Improvement of pedestrian safety : response of detection systems to real accident scenarios / L'amélioration de la sécurité du piéton : validation de système actif de sécurité par la reconstruction d'accidents réels

Hamdane, Hédi 05 December 2016 (has links)
Le contexte général de cette recherche concerne la sécurité active des piétons. De nombreux systèmes embarqués dans les véhicules sont actuellement développés afin de détecter un piéton sur la chaussée et d’éviter une collision soit par une manœuvre de freinage d’urgence soit par une manœuvre de déport. La plupart de ces systèmes d’aide à la conduite sont basés sur des systèmes de détection (caméras, radars, etc). Ils analysent la scène en temps réel, puis effectuent un traitement d’images dans le but d’identifier un potentiel danger. Or il apparaît difficile de déterminer la pertinence de ces systèmes en termes de sécurité routière. L’'objectif général de ce travail est ainsi d’estimer cette pertinence en confrontant les systèmes à de multiples configurations d’accidents réels. La méthodologie consiste à tester les systèmes de détection des piétons dans les configurations d’accidents reconstruits en les associant à la cinématique des véhicules. Le test de performance de ces systèmes a été alors réalisé en vérifiant leurs compatibilités au regard de la chronologie des accidents; i.e. vérifier la possibilité d’'évitement des accidents. À partir de ces reconstructions d’accidents réels, une analyse a été réalisée afin de dégager les enjeux au niveau spatio-temporelle qui influencent la sécurité primaire du piéton. / The scope of this research concerns pedestrian active safety. Several primary safety systems have been developed for vehicles in order to detect a pedestrian and to avoid an impact. These systems analyse the forward path of the vehicle through the processing of images from sensors. If a pedestrian is identified on the vehicle trajectory, these systems employ emergency braking and some systems may potentially employ emergency steering. Methods for assessing the effectiveness of these systems have been developed. But, it appears difficult to determine the relevance of these systems in terms of pedestrian protection. The general objective of this research was to test the response of these systems in many accident configurations.The methodology consisted of coupling the vehicle dynamic behaviour with a primary safety system in order to confront these systems to real accident configurations. The relevance of these systems is studied by verifying the feasibility of deploying an autonomous emergency manoeuvre during the timeline of the accident and according to the vehicle dynamic capabilities: i.e. verifying the possibilities in terms of crash avoidance. From these accident reconstructions and simulation, factors relevant to the primary safety of pedestrians were deduced.
6

In-depth accident investigation of pedestrian impact dynamics and development of head injury risk functions / Évaluation des conditions d'impact de la tête en cas d'accident de piéton

Peng, Yong 17 September 2012 (has links)
Les piétons comptent parmi les usagers de la route les plus vulnérables dans la mesure où ils ne bénéficient d'aucune protection en cas d'impact avec un véhicule automobile. Plus de 1,17 millions de personnes sont tués sur la route de part le monde dont environ 65% ce piétons. Les blessures de la tête, souvent fatales, concernent environ 30 % des blessures enregistrées. Ces blessures conduisent à des incapacités de longue durée avec un coût sociétal et économique immense. Il est par conséquent essentiel de comprendre aussi bien les mécanismes d'accidents que les mécanismes de blessure de la tête afin d'intervenir sur la conception de la face avant des véhicules automobile. Dans ce contexte l'objet de la présente thèse est d'analyser la répons dynamique du piton en cas d'accident et ce contribuer au développement de critères de blessure de la tête. Dans le but d'étudier l'influence de la position du piéton, de la géométrie de la face avant du véhicule et de sa vitesse initiale sur la cinématique du piéton et les conditions d'impact de la tête, une simulation multi-corps a été mise en place. Les résultats de ces simulations donnent la vitesse et l'angle d'impact de la tête et la position de l'impact sur le véhicule. Cette analyse paramètrique a été conduite sur cinq types de véhicules et pour un modèle humain adulte et enfant de 6 ans et a permis de consolider les connaissances sur la conditions d'impact de la tête en comparaison avec les tests normatifs en vigueur.[...] / Pedestrians are regarded as an extremely vulnerable and high-risk group of road users since they are unprotected in vehicle impacts. More than 1.17 million people throughout the world are killed in road traffic accidents each year. Where, about 65% of deaths involve pedestrians. The head injuries in vehicle-pedestrian collisions accounted for about 30% of all reported injuries on different body regions, which often resulted in a fatal consequence. Such injuries can result in disabilities and long-term sequence, which lead to significant social costs. It is therefore important to study the characteristics of pedestrian accidents and understand the head injury mechanism of the pedestrian so as to improve vehicle design for pedestrian protection. The aim of this study is to investigate pedestrian dynamic response and develop head injury risk functions.In order to investigate the effect of pedestrian gait, vehicle front geometry and impact velocity on the dynamic responses of the head, the multi-body dynamic (MBD) models were used to simulate the head responses in vehicle to pedestrian collisions with different vehicle types in terms of head impact point measured with Wrap Around Distance (WAD), head relative velocity and impact angle. A simulation matrix is established using five vehicle types, and two mathematical models of the pedestrians represented a 50th male adult and a 6 year old child as well as seven pedestrian gaits based on typical postures in pedestrian accidents. In order to simulate a large range of impact conditions, four vehicle velocities (30 km/h, 40 km/h, 50 km/h and 60 km/h) are considered for each pedestrian position and vehicle type.A total of 43 passenger car versus pedestrian accidents were selected from In-depth Investigation of Vehicle Accidents in Changsha, China (IVAC) and German In-Depth Accident Study (GIDAS) database for simulation study. According to real-world accident investigation, accident reconstructions were conducted using multi-body system (MBS) pedestrian and car models under MADYMO simulation environment to calculate head impact conditions, in terms of head impact velocity, head position and head orientation. In order to study kinematics of adult pedestrian, relationship curves: head impact time, throw distance, head impact velocity and vehicle impact velocity, were computed and logistic regression models: head impact velocity, resultant angular velocity, HIC value, head contact force and head injuries, were developed based on the results from accident reconstructions.The automobile windshield, with which pedestrians come into frequent contact, has been identified as one of the main contact sources for pedestrian head injuries. In order to investigate the mechanical behavior of windshield laminated glass in the caseof pedestrian head impact, windshield FE models were set up using different combination for the modeling of glass and PVB, with various connection types and two mesh sizes (5 mm and 10 mm). Each windshield model was impacted with a standard adult headform impactor in an LS-DYNA simulation environment, and the results were compared with the experimental data reported in the literatures.In order to assess head injury risks of adult pedestrians, accident reconstructions were carried out by using Hybrid III head model based on the real-world pedestrian accidents. The impact conditions were obtained from the MBS simulation, including head impact velocity, head position and head orientation. They were used to set the initial conditions in a simulation of a Hybrid III FE head model striking a windshield FE model. Logistic regression models, Skull Fracture Correlate (SFC), head linear acceleration, Head Impact Power (HIP), HIC value, resultant angular acceleration and head injuries, were developed to study brain injury risk.{...]
7

Accident Reconstruction in Ice Hockey: A Pipeline using Pose and Kinematics Estimation to Personalize Finite Element Human Body Models / Rekonstruktion av olyckor i ishockey: En pipeline som använder pose- och kinematikuppskattning för att anpassa finita element humanmodeller

Even, Azilis Emma Sulian January 2024 (has links)
Ice hockey is a sport whose athletes are at high risk for traumatic head injuries due to the violence of potential impacts with other athletes, ice, or glass during games. In order to develop the best protective strategies for the players, it is necessary to have a deep understanding of accident mechanisms during ice hockey games. Accident reconstructions using the finite element (FE) method are a way to perform a systematic analysis of impact cases, but require input data on the circumstances of the accidents. Thus, this project focused on finding a way to extract the position and velocity of the players involved from readily available videos of ice hockey accidents using motion tracking methods. This project included two parts: pose estimation and velocity estimation. The pose estimation aimed to align a human body model (HBM) with the players' poses and the key steps included estimating 2D joints from impact images, estimating the players' 3D poses, skeleton inferencing, and aligning the results with the baseline HBM via pelvic registration. The velocity estimation defined the initial conditions for simulating the collision and key steps included identifying the players' 2D joints across impact video frames, tracking of the players using a simplified pelvis projection on the rink plane, and estimating the players’ velocity using homography to identify their position on the ice hockey rink. Then, both parts were applied to accident cases from a video database of collisions that occurred during a hockey league season. The cases in which the pipeline was fully applied ultimately resulted in LS-DYNA positioning files for the Total Human Model for Safety (THUMS) model, and problematic cases were used to get an overview of the limits of the chosen methodology. Said limitations were mostly linked to the quality of the source videos, which is highly dependent on the source of the videos and possibly not controllable. Due to this, selection criteria are required, such as checking the blurriness and quality of the videos and the viewing angles to ensure as few occlusions as possible. Overall, this project resulted in a working semi-automatic pipeline for pose and velocity estimation in contact sports collisions, as well as a first set of personalized input information that should allow the reconstruction of ice hockey accidents using FE simulations. / Ishockey är en sport vars utövare löper stor risk att drabbas av traumatiska huvudskador på grund av de våldsamma potentiella kollisionerna med andra utövare, is eller glas under matcherna. För att kunna utveckla de bästa skyddsstrategierna för spelarna är det nödvändigt att ha en djup förståelse för olycksmekanismerna under ishockeymatcher. Olycksrekonstruktioner med hjälp av finita elementmetoden är ett sätt att utföra en systematisk analys av kollisionsfall, men kräver indata om omständigheterna kring olyckorna. Detta projekt fokuserade därför på att hitta ett sätt att extrahera de inblandade spelarnas position och hastighet från lättillgängliga videor av ishockeyolyckor med hjälp av rörelsespårningsmetoder. Projektet bestod av två delar: poseuppskattning och hastighetsuppskattning. Poseuppskattningen syftade till att anpassa en humanmodell till spelarnas poser och de viktigaste stegen omfattade uppskattning av 2D-leder från kollisionsbilder, uppskattning av spelarnas 3D-poser, skelettinferens och anpassning av resultaten till baslinjen HBM via bäckenregistrering. Hastighets-uppskattningen definierade de initiala villkoren för simulering av kollisionen och viktiga steg inkluderade identifiering av spelarnas 2D-led i videobilder av kollisionen, spårning av spelarna med hjälp av en förenklad bäckenprojektion på rinkplanet och uppskattning av spelarnas hastighet med hjälp av homografi för att identifiera deras position på ishockeyrinken. Därefter tillämpades båda delarna på olycksfall från en videodatabas med kollisioner som inträffade under en säsong i en hockeyliga. De fall där pipelinen tillämpades fullt ut resulterade slutligen i LS-DYNA-positioneringsfiler, och problematiska fall användes för att få en överblick över gränserna för den valda metoden. Begränsningarna var främst kopplade till kvaliteten på källvideorna, som är starkt beroende av källan till videorna och eventuellt inte kan kontrolleras. På grund av detta krävs urvalskriterier, t.ex. kontroll av videornas oskärpa och kvalitet samt betraktningsvinklar för att säkerställa så få ocklusioner som möjligt. Sammantaget resulterade detta projekt i en fungerande halvautomatisk pipeline för pose- och hastighetsuppskattning vid kollisioner i kontaktsporter, samt en första uppsättning personlig indatainformation som bör möjliggöra rekonstruktion av ishockeyolyckor med hjälp av simulering med finita element.
8

Soft Surface Roll Mechanics Parameters for Light Vehicle Rollover Accident Reconstruction

Henry, Kevin Claude 18 July 2007 (has links) (PDF)
Light vehicle rollover accidents on soft surfaces can be modeled assuming constant drag with linear motion equations and other engineering principles. The concept of using segment average results to evaluate roll mechanics parameters throughout a roll sequence, and specifically, segment duration to evaluate vehicle trajectory between ground impacts is developed. The trajectory model is presented, explained and compared to values obtained by analyzing digital video of rollover crash tests. Detailed film analysis procedures are developed to obtain data from rollover crash tests that are not otherwise documented. Elevation of the center of gravity of vehicles is obtained where instrumentation does not explicitly yield this data. Instantaneous center of gravity elevation data throughout a roll sequence provides the opportunity to calculate descend distances as a vehicle travels from one ground contact to another. This data is used to quantify severity of ground impacts as a vehicle interact with the ground throughout a roll sequence. Segment average analysis is a reasonable method for determining general roll mechanics parameters. Because of the chaotic nature of rollover accidents, the range of effective drag factors for a given roll surface may be quite large. Choosing an average of typical drag factors is a reasonable approach for a first-order approximation although certain parameters may be predicted less accurately than if actual values were known. The trajectory results demonstrate the influence of drag factor descent height calculations. Typical constant drag factors tend to overestimate descent height early in a roll sequence and underestimate descent height later in the sequence. The trajectory model is a useful tool to aid in understanding rollover mechanics although a rolling vehicle may be in contact with the ground for a significant fraction of a roll segment. The model should not be used at locations in roll sequences where there are extremes in translational center of gravity decelerations. These extremes include the segments immediately following overturn where there are large angular accelerations and large differences between the tangential velocity of the vehicle perimeter and the translational velocity of the center of gravity, as well as segments that include vehicle impacts with irregular topography.
9

Technika zatáčení řidičů a možnosti vozidel v aplikaci software pro analýzu nehod / Turning Radius Limits of Vehicles and Common Drivers and Their Application in Software for Traffic Accident Reconstruction

Jelínková, Eliška January 2018 (has links)
The diploma thesis deals with the turning technique of cars and common drivers. The thesis examines the behavior of vehicles and drivers when cornering, forward and reverse driving. The aim of the thesis is to analyze the technique of turning vehicles and common drivers and apply the acquired data to simulation programs for road accident analysis. The individual aims of the thesis are theoretical description of the given problem and experimental verification of the parameters of radii, angles and time course of turning of different vehicles and common drivers in forward and reverse driving under comparable conditions and to describe mutual relations.

Page generated in 0.1424 seconds