Spelling suggestions: "subject:"accola"" "subject:"piccola""
1 |
Cyclic Trigonal Riemann Surfaces of Genus 4Ying, Daniel January 2004 (has links)
<p>A closed Riemann surface which can be realized as a 3-sheeted covering of the Riemann sphere is called trigonal, and such a covering is called a trigonal morphism. Accola showed that the trigonal morphism is unique for Riemann surfaces of genus g ≥ 5. This thesis will characterize the Riemann surfaces of genus 4 wiht non-unique trigonal morphism. We will describe the structure of the space of cyclic trigonal Riemann surfaces of genus 4.</p> / Report code: LiU-Tek-Lic-2004:54. The electronic version of the printed licentiate thesis is a corrected version where errors in the calculations have been corrected. See Errata below for a list of corrections.
|
2 |
Cyclic Trigonal Riemann Surfaces of Genus 4Ying, Daniel January 2004 (has links)
A closed Riemann surface which can be realized as a 3-sheeted covering of the Riemann sphere is called trigonal, and such a covering is called a trigonal morphism. Accola showed that the trigonal morphism is unique for Riemann surfaces of genus g ≥ 5. This thesis will characterize the Riemann surfaces of genus 4 wiht non-unique trigonal morphism. We will describe the structure of the space of cyclic trigonal Riemann surfaces of genus 4. / <p>Report code: LiU-Tek-Lic-2004:54. The electronic version of the printed licentiate thesis is a corrected version where errors in the calculations have been corrected. See Errata below for a list of corrections.</p>
|
Page generated in 0.2429 seconds