• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Non-simple abelian varieties and (1,3) Theta divisors

Borowka, Pawel January 2012 (has links)
This thesis studies non-simple Jacobians and non-simple abelian varieties. The moti- vation of the study is a construction which gives a distinguished genus 4 curve in the linear system of a (1, 3)-polarised surface. The main theorem characterises such curves as hyperelliptic genus 4 curves whose Jacobian contains a (1, 3)-polarised surface. This leads to investigating the locus of non-simple principally polarised abelian g- folds. The main theorem of this part shows that the irreducible components of this locus are Is~, defined as the locus of principally polarised g-folds having an abelian subvariety with induced polarisation of type d. = (d1, ... , dk), where k ≤ g/2 Moreover, there are theorems which characterise the Jacobians of curves that are etale double covers or double covers branched in two points. There is also a detailed computation showing that, for p > 1 an odd number, the hyperelliptic locus meets IS4(l,p) transversely in the Siegel upper half space
2

Cyclic Trigonal Riemann Surfaces of Genus 4

Ying, Daniel January 2004 (has links)
<p>A closed Riemann surface which can be realized as a 3-sheeted covering of the Riemann sphere is called trigonal, and such a covering is called a trigonal morphism. Accola showed that the trigonal morphism is unique for Riemann surfaces of genus g ≥ 5. This thesis will characterize the Riemann surfaces of genus 4 wiht non-unique trigonal morphism. We will describe the structure of the space of cyclic trigonal Riemann surfaces of genus 4.</p> / Report code: LiU-Tek-Lic-2004:54. The electronic version of the printed licentiate thesis is a corrected version where errors in the calculations have been corrected. See Errata below for a list of corrections.
3

Cyclic Trigonal Riemann Surfaces of Genus 4

Ying, Daniel January 2004 (has links)
A closed Riemann surface which can be realized as a 3-sheeted covering of the Riemann sphere is called trigonal, and such a covering is called a trigonal morphism. Accola showed that the trigonal morphism is unique for Riemann surfaces of genus g ≥ 5. This thesis will characterize the Riemann surfaces of genus 4 wiht non-unique trigonal morphism. We will describe the structure of the space of cyclic trigonal Riemann surfaces of genus 4. / <p>Report code: LiU-Tek-Lic-2004:54. The electronic version of the printed licentiate thesis is a corrected version where errors in the calculations have been corrected. See Errata below for a list of corrections.</p>

Page generated in 0.0313 seconds