• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 27
  • 7
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 123
  • 26
  • 18
  • 18
  • 16
  • 13
  • 11
  • 11
  • 11
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.

Exposure Evaluation and Control of Acetone in a Plastination Laboratory

Rohrs, Skylar Lee 20 August 2014 (has links)
No description available.

Acetone Induced Structural Effects on Charge Storage in PEO-Graphite Supercapacitor Electrodes

Thar, Dhaval 16 June 2017 (has links)
No description available.

The Impact of Humidity on an Optical Chemical Sensing Device for Non-invasive Exhaled Gas Monitoring

Qian, Zexin 20 October 2016 (has links)
No description available.

Mathematical modeling of solvent removal from thin polymer films

Roehner, Richard January 1982 (has links)
No description available.

VOC Catalytic Oxidation on Manganese Oxide Catalysts Using Ozone

Reed, Corey William 21 June 2005 (has links)
This dissertation describes the current and common problem of removing low concentrations of pollutants known as volatile organic compounds (VOCs) from large volume gas emissions. Silica-supported manganese oxide catalysts with loadings of 3, 10, 15, and 20 wt. % (as MnO2) were characterized using x-ray absorption spectroscopy and x-ray diffraction (XRD). The edge positions in the x-ray absorption spectra indicated that the oxidation state for the manganese decreased with increasing metal oxide loading from a value close to that of Mn2O3 (+3) to a value approximating that of Mn3O4 (+2⅔). The XRD was consistent with these results as the diffractograms for the supported catalysts of higher manganese oxide loading matched those of a Mn3O4 reference. The reactivity of the silica-supported manganese oxide catalysts in acetone oxidation using ozone as an oxidant was studied over the temperature range of 300 to 600 K. Both oxygen and ozone produced mainly CO₂ as the product of oxidation, but in the case of ozone the reaction temperature and activation energy were significantly reduced. The effect of metal oxide loading was investigated, and the activity for acetone oxidation was greater for a 10 wt. % MnOx/SiO2 catalyst sample compared to a 3 wt. % MnOx/SiO2 sample. A detailed mechanistic study of acetone oxidation using ozone was performed on a 10 wt. % silica-supported manganese oxide catalyst utilizing Raman spectroscopy, temperature programmed desorption (TPD), and kinetic measurements. In situ Raman spectroscopy at reaction conditions identified a band at 2930 cm-1 due to an adsorbed acetone species on the silica support and a band at 890 cm-1 due to an adsorbed peroxide species on the manganese oxide. A steady-state kinetic analysis, which varied acetone partial pressure (101 – 405 Pa), ozone partial pressure (101 – 1013 Pa), and temperature (318, 333, 343, and 373 K), was used to determine reaction rate expressions, while a transient kinetic study (318 K) was used to determine the role of the adsorbed species in the reaction mechanism. It was found that the rates of the acetone and ozone reactions were equally well described by both a power rate law and a Langmuir-Hinshelwood expression. The transient experiments showed that the rates of formation and reaction of the observed peroxide surface species did not correspond to the overall reaction rate, and it was concluded that it was not directly involved in the rate determining step of the reaction. A mechanism is proposed involving the reaction of an adsorbed acetone intermediate with an atomically adsorbed oxygen species via a dual site surface reaction to form complete oxidation products. / Ph. D.

A kinetic study of the transfer of acetone between toluene and water phases

Puyear, Donald Empson January 1965 (has links)
The purpose of this investigation was to apply the techniques of chemical kinetics to the transfer of acetone between water and toluene phases, and thereby attempt to develop mechanisms and evaluate resistances to such transfer. An extraction cell was constructed which consisted of a 20-liter glass battery jar with independently driven impellers in each phase and a stationary phase divider at the interface. Extraction tests were conducted on the toluene-acetone-water system in the cell at 4, 15, and 30℃ at initial acetone concentrations ranging from 0.008 to 0.035 gram acetone per gram solvent. In all tests the stirrer bars were in contra-rotation at approximately 60 revolutions per minute. Initial unidirectional transfer rates were correlated with initial acetone concentrations and the correlations were used to predict the net rate of mass transfer at other than initial conditions. The results of this investigation led to the following conclusions: The flux of acetone from toluene solution to pure water, gm/min, sq cm, at 30℃ (F<sub>t</sub>) may be represented by the equation F<sub>t</sub> = 0.0403 C<sub>t</sub> where C<sub>t</sub> is gm acetone/gm toluene. The flux of acetone from an aqueous solution to pure toluene at 30℃ may be represented by the equation F<sub>w</sub> = 10 (- 0.0333 + 43.34 C<sub>w</sub>) / 10⁴ for aqueous acetone concentrations between 0.010 and 0.035 gram acetone per gram water, and by F<sub>w</sub> = 0.0251 C<sub>w</sub> for aqueous acetone concentrations below 0.010 gram acetone per gram water. For the range of concentration and driving force studied, the transfer of acetone between solutions in toluene and in water at 30℃ may be evaluated as the difference in the unidirectional fluxes. A mechanism for the transfer of acetone between toluene and water is proposed which involves, for transfer in each direction, (1) eddy diffusion of the acetone to the region of the interface, (2) transfer of a small amount of solvent from the opposite side of the interface, (3) a change in solvation of the acetone involving solvent from the opposite phase dissolved at the interface, (4) molecular diffusion into the opposite phase, and (5) eddy diffusion of the solvated acetone away from the region of the interface into the bulk of the receiving phase. Neither accepted theories, which predict that the coefficient of mass transfer will vary as a simple function of molecular diffusivity, nor correlations based on the rate of stirring and physical properties of the phases accounted for the large increase in the flux of acetone from water to toluene with increasing initial acetone concentrations in the aqueous phase. / Ph. D.

Effect of 400-kilocycle insonation on the extraction of acetone from carbon tetrachloride with water

Murray, Lawrence P. January 1954 (has links)
no abstract provided by author / Master of Science

The effects of acetone shock loading on phenol acclimated cultures

Reynolds, Larry Robert January 1984 (has links)
The possibility of acetone shock loadings to phenol acclimated systems resulting in sequential substrate utilization and increased effluent phenol concentrations was evaluated. Phenol acclimated batch and continuous-flow systems, developed with seed from a municipal wastewater treatment plant, were shock loaded with acetone, bacto-peptone, and domestic primary effluent. Phenol and acetone utilization rates were then monitored using direct injection gas-liquid chromatography. The results of the investigation indicated that, under the described experimental conditions, qualitative shock loading of phenol acclimated/utilizing cultures had no significant effect on effluent phenol concentrations. Variations of system pH, however, were found to have extreme effects. / Master of Science

Fundamental factors affecting the extraction efficiency in a pulse liquid-liquid extractor

Swisher, George Thomas 16 February 2010 (has links)
The purpose of this investigation was to redesign, construct, and operate a two-inch experimental pulse liquid-liquid extractor, and to determine the effects of the pulse amplitude, the number of plates, and the plate-free-area on the stage efficiency of the column. The optimum liquid flow rates were also determined. An examination of the literature was conducted for a review of the available information on pulse extractors. Although a great deal of literature was available on the topic of liquid-liquid extraction, detailed information on only two pulse extractors could be found. The results obtained during this investigation compare favorably with those reported in the literature. A two-inch experimental pulse-type extractor was constructed. The liquids were pulsed by means of a sylphon-type bellows operated by a push rod which was driven by an eccentric cam. For the satisfactory operation of the extractor various auxiliary apparatus was required; important among these were the supporting framework, the push-rod bearing, the reduction train for the can, the storage tanks, and the tubing and fittings. Twenty-seven individual experimental tests were conducted, extracting acetone from carbon tetrachloride with water, to determine the effects of the various operating parameters on the stage efficiency of the pulse column. During the experimental tests the following variables were studied: pulse amplitude at one, two, and three inches of vertical liquid displacement; number of plates with four, eight, and twelve plates; and plate-free-area with eight, sixteen, and thirty-two per cent free area. It was found that the pulse amplitude, the number of plates, and the plate-free-area each have an independent significant effect on the stage efficiency of the pulse column; the plate-free-area has the largest relative effect, while the pulse amplitude has the smallest relative effect. It was further proven by this investigation that the interactions between the pulse amplitude and number of plates, the pulse amplitude and plate-free-area, and the number of plates and plate-free-area have no significant effect on the stage efficiency of the pulse column. The flow rates for satisfactory column operation are 1807, 2211, 1478, and 2299 pounds per hour-square foot of column cross-section for the feed, solvent, raffinate, and extract, respectively. / Master of Science

Development of techniques for trace gas detection in breath

Langley, Cathryn Elinor January 2012 (has links)
This thesis aims to investigate the possibility of developing spectroscopic techniques for trace gas detection, with particular emphasis on their applicability to breath analysis and medical diagnostics. Whilst key breath molecules such as methane and carbon dioxide will feature throughout this work, the focus of the research is on the detection of breath acetone, a molecule strongly linked with the diabetic condition. Preliminary studies into the suitability of cavity enhanced absorption spectroscopy (CEAS) for the analysis of breath are carried out on methane, a molecule found in varying quantities in breath depending on whether the subject is a methane-producer or not. A telecommunications near-infrared semiconductor diode laser (1.6 µm) is used with an optical cavity based detection system to probe transitions within the vibrational overtone of methane. Achieving a minimum detectable sensitivity of 600 ppb, the device is used to analyse the breath of 48 volunteers, identifying approximately one in three as methane producers. Following this, a second type of laser source, the novel and widely tunable Digital Supermode Distributed Bragg Reflector (DS-DBR) laser, is characterised and the first demonstration of its use in spectroscopy documented. Particular emphasis is given to its application to CEAS and to probing the transitions of the two Fermi resonance components of the CO_2 3ν_1 + ν_3 combination bands found within the spectral range (1.56 - 1.61 µm) of the laser, providing the means to determine accurate ^{13}CO_2/^{12}CO_2 ratios for use in the urea breath test. Not all molecules exhibit narrow, well-resolved ro-vibrational transitions and the next section of the thesis focuses on the detection of molecules, such as acetone, with broad, congested absorption features which are not readily discernible using narrowband laser sources. To provide the necessary specificity for these molecules, two types of broadband source, a Superluminescent Light Emitting Diode (SLED) and a Supercontinuum source (SC), both emitting over the 1.6 - 1.7 µm region, are used in the development of a series of broadband cavity enhanced absorption (BB-CEAS) spectrometers. The three broadband absorbers investigated here, butadiene, acetone and isoprene, all exhibit overtone and combination bands in this spectral region and direct absorption measurements are taken to determine absorption cross-sections for all three molecules. The first BB-CEAS spectrometer couples the SLED device with a dispersive monochromator, attaining a minimum detectable sensitivity of 6 x 10^{-8} cm^{-1}, which is further enhanced to 1.5 x 10^{-8} cm^{-1} on replacing the monochromator with a Fourier Transform interferometer. The spectral coverage is then extended to 1.5 - 1.7 µm by coupling the first SLED with a second device, providing a demonstration of simultaneous multiple species detection. Finally, a SC source is used to provide greater power and uniform spectral intensity, resulting in an improved minimum detectable sensitivity of 5 x 10^{-9} cm^{-1}, or 200 ppb, 400 ppb and 200 ppb for butadiene, acetone and isoprene respectively. This device is then applied to acetone-enriched breath samples; the resulting spectra are fitted with a simulation to return the acetone levels present in the breath-matrix. Following this, the development of a prototype breath acetone analyser, carried out at Oxford Medical Diagnostics Ltd. (OMD), is described. To fulfill the requirements of a compact and commercially-viable device, a diode laser-based system is used, which necessitates a thorough investigation into all possible sources of absorption level change. Most notably, this includes a study into the removal and negating of interfering species, such as water vapour, and to a lesser extent, methane. A novel solution is presented, utilising a water-removal device in conjunction with molecular sieve so that each breath sample generates its own background, which has allowed breath acetone levels to be measured within an uncertainty of 200 ppb. Spectroscopic detection then moves to the mid-infrared with the demonstration of a continuous wave 8 µm quantum cascade laser, which allows the larger absorption cross-sections associated with fundamental vibrational modes to be probed. Following the laser's characterisation using methane, including a wavelength modulation spectroscopy study, the low effective laser linewidth is utilised to resolve rotational structure in low pressure samples of pure acetone. Absorption cross-sections are determined before the sensitivity of the system is enhanced for the detection of dilute concentrations of acetone using two types of multipass cells, firstly a White cell and secondly a home-built Herriott cell. This allows an acetone minimum detectable absorption of 350 ppb and 20 ppb to be attained, respectively. Following this, an optical cavity is constructed and, on treating breath samples in a water-removal device prior to analysis, breath acetone levels determined and corroborated with a mass spectrometer. Finally, a preliminary study probing acetone in the ultraviolet is presented. Utilising an LED centred at 280 nm with a low finesse optical cavity and an imaging spectrograph, detection of 25 ppm of acetone is demonstrated and possible vibronic structure resolved. Combining large absorption cross-sections with the potential to be compact and commercially viable, further development of this arrangement could ultimately represent the optimum solution for breath acetone detection.

Page generated in 0.0305 seconds