Spelling suggestions: "subject:"acoplamento entre frequ?ncia"" "subject:"ocoplamento entre frequ?ncia""
1 |
Desvendando oscila??es hipocampais atrav?s de comodula??esTeixeira, Robson Scheffer 07 April 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-07-17T13:25:04Z
No. of bitstreams: 1
RobsonSchefferTeixeira_TESE.pdf: 28541390 bytes, checksum: 963c2c435bf67ce018fa618617a1a0a6 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-07-19T14:26:40Z (GMT) No. of bitstreams: 1
RobsonSchefferTeixeira_TESE.pdf: 28541390 bytes, checksum: 963c2c435bf67ce018fa618617a1a0a6 (MD5) / Made available in DSpace on 2017-07-19T14:26:40Z (GMT). No. of bitstreams: 1
RobsonSchefferTeixeira_TESE.pdf: 28541390 bytes, checksum: 963c2c435bf67ce018fa618617a1a0a6 (MD5)
Previous issue date: 2016-04-07 / An?lises espectrais de registros eletrofisiol?gicos extracelulares t?m revelado que a
atividade el?trica produzida pelo c?rebro ? comumente organizada em padr?es r?tmicos,
conhecidos como oscila??es neuronais. Mais recentemente, descobriu-se que as oscila??es
neuronais de frequ?ncias distintas n?o s?o independentes, mas podem interagir entre si. Ao
longo das ?ltimas duas d?cadas, diversas ferramentas de an?lises foram desenvolvidas,
amadurecidas e incorporadas de outras ?reas para se estudar os chamados acoplamentos entre
frequ?ncias de oscila??es neuronais observadas nestes registros. Oscila??es neuronais s?o
ditas acopladas se houver uma rela??o de depend?ncia entre suas caracter?sticas, como fase,
amplitude ou frequ?ncia instant?neas. Dentre elas, o acoplamento fase-amplitude ?
caracterizado por um aumento da amplitude instant?nea de uma banda de frequ?ncia
condicionado a uma fase instant?nea de uma oscila??o de outra banda, enquanto que o
acoplamento fase-fase do tipo n:m ? caracterizado pela rela??o fixa entre m ciclos de uma
frequ?ncia em nciclos de outra. O hipocampo ? uma regi?o cerebral envolvida na forma??o de mem?rias e navega??o
espacial. Assim como em outras estruturas, as redes neuronais do hipocampo produzem
diversos padr?es oscilat?rios, que variam de acordo com os estados do ciclo sono-vig?lia.
Entre estes padr?es, classicamente destacam-se os ritmos teta (4-12 Hz) e gama (30-100 Hz),
que caracterizam estados comportamentais de locomo??o e sono REM. No entanto, o estudo
dos padr?es de acoplamento oscilat?rio no hipocampo tem revelado subtipos oscilat?rios
distintos dentro da defini??o tradicional da banda gama. Mais ainda, trabalhos recentes t?m
mostrado a exist?ncia de oscila??es acopladas ao ritmo teta em frequ?ncias mais altas (>100
Hz), embora haja uma diverg?ncia na literatura atual sobre at? aonde estas oscila??es de altas
frequ?ncias representariam atividade oscilat?ria genu?na de redes neuronais ou se seriam derivadas de efeitos esp?rios oriundos de contamina??es por resqu?cios de potencias de a??o registrados extracelularmente. A presente tese de doutorado visa contribuir para o maior entendimento dos padr?es
oscilat?rios produzidos por redes neuronais do hipocampo, com particular foco nas rela??es
de acoplamento entre oscila??es de diferentes frequ?ncias. Atrav?s de dados pr?prios e
compartilhados de terceiros de animais implantados cronicamente com matrizes de m?ltiplos
eletrodos, obtivemos registros da atividade el?trica da regi?o CA1 de ratos durante a
explora??o de ambientes familiares e per?odos de sono. Investigamos a exist?ncia conjunta de
distintos padr?es oscilat?rios do hipocampo em diferentes frequ?ncias atrav?s de marcadores
eletrofisiol?gicos, anat?micos e comportamentais de cada oscila??o neuronal que, quando
combinados, levaram a um perfil ?nico para cada banda de frequ?ncia. Nossos resultados
mostram a exist?ncia de m?ltiplas bandas de frequ?ncia moduladas pelo ritmo teta
hipocampal. As modula??es s?o dotadas de diversos mecanismos separat?rios,
provavelmente de forma a minimizar interfer?ncias. Demonstramos ainda que padr?es
oscilat?rios esp?rios e genu?nos podem co-existir numa mesma faixa de frequ?ncia, e que, ao
contr?rio de trabalhos recentes, n?o h? evid?ncia para acoplamentos do tipo fase-fase n:m no
hipocampo. A capacidade de uma oscila??o neural interagir com outras oscila??es,
aparentemente independentes, levanta questionamentos naturais sobre sua signific?ncia
biol?gica, que, apesar de diversos avan?os na ?rea, ainda permanece um mist?rio na sua
ess?ncia. / Spectral analysis of extracellular electrophysiological recordings revealed that the
brain electrical activity is often organized in rhythmic patterns, known as neuronal
oscillations. Recently, it was discovered that oscillations of distinct frequencies are not
independent, but can interact to each other. In the last two decades, several analysis tools
were developed or incorporated from other fields to study cross-frequency coupling between
neural oscillations. Neural oscillations are said to be coupled if there is a dependency
between their features, such as phase, amplitude or frequency. Among them, phase ?
amplitude coupling is characterized by an increase in the instantaneous amplitude of one
frequency band conditioned to the instantaneous phase of another frequency band, whereas
n:m phase ? phase coupling is characterized by a fixed relation between m cycles of one
frequency to n cycles of another one. The hippocampus is a brain region involved in memory formation and spatial
navigation. As in other brain structures, hippocampal neural networks generate several
oscillatory patterns, which vary according to the stage of the sleep-waking cycle. Among
these patterns, theta (4 ? 12 Hz) and gamma (30 ? 100 Hz) oscillations are prominent during
active waking and REM sleep. However, the study of coupling patterns in the hippocampus
has revealed distinct sub-types of oscillatory activity inside the traditional gamma band.
Moreover, recent studies have shown the existence of even faster oscillations coupled to theta
in the hippocampus (> 100 Hz), although there is a current divergence in the literature about
whether they represent genuine network activity or spurious by-products from incomplete
filtering of extracellular spikes. This thesis investigates oscillatory patterns generated by hippocampal neural
networks, focusing in the coupling relation among oscillations of different frequencies. Using our own data and shared third-party ones of chronically implanted animals with multisite
electrodes, we recorded electrical activity in the CA1 region of rats while exploring a familiar
environment and during sleep stages. We investigated the existence of simultaneous but
distinct oscillatory patterns in the hippocampus separated by electrophysiological, anatomic
and behavioral markers, which, once taken together, can lead to a unique profile for each
frequency band. Our results point to the existence of several frequency bands coupled to the
hippocampal theta rhythm. All modulations are found to be separated by mechanisms that can
potentially avoid interferences. We also demonstrate that a spurious oscillatory patterns can
emerge and co-exist in the same frequency band of genuine oscillations and, contrary to
recent work, we show that there is lack of evidence for n:m phase ? phase coupling in the
hippocampus. The capacity of neural oscillations to interact with one another raises questions
about the biological significance of such phenomenon; despite recent progress in the field,
however, its essence remains a mystery.
|
2 |
Caracteriza??o dos acoplamentos fase-amplitude na regi?o CA1 do hopocampoTeixeira, Robson Scheffer 02 December 2011 (has links)
Made available in DSpace on 2014-12-17T15:28:49Z (GMT). No. of bitstreams: 1
RobsonST_DISSERT.pdf: 350196 bytes, checksum: eaf6055553dc1f6cec39e0f754c20635 (MD5)
Previous issue date: 2011-12-02 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Brain oscillation are not completely independent, but able to interact with each other
through cross-frequency coupling (CFC) in at least four different ways: power-to-power,
phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not
only the rhythms per se, but also their interactions are involved in the execution of cognitive
tasks, mainly those requiring selective attention, information flow and memory consolidation.
It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial
information from the medial entorhinal cortex to the CA1 region of the hippocampus by
means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known
about general characteristics of CFCs in several brain regions. In this work we recorded local
field potentials using multielectrode arrays aimed at the CA1 region of the dorsal
hippocampus for chronic recording. Cross-frequency coupling was evaluated by using
comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010).
All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two
functionally distinct oscillations within the fast gamma frequency range, both coupled to the
theta rhythm during active exploration and REM sleep: an oscillation with peak activity at
~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially
modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is
strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at
stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates
from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects
CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from
sharp-wave associated ripple oscillations in several key characteristics. Our results
demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a
redefinition of fast gamma oscillations / As oscila??es cerebrais n?o s?o completamente independentes, mas capazes de
interagir umas com as outras atrav?s de acoplamentos entre frequ?ncias (cross-frequency
coupling, doravante CFC) em pelo menos quatro diferentes modalidades: amplitudeamplitude,
fase-fase (coer?ncia), fase-frequ?ncia e fase-amplitude. Evid?ncias recentes
sugerem que n?o somente os ritmos per se, mas tamb?m as intera??es entre eles est?o
envolvidas na execu??o de tarefas cognitivas, principalmente aquelas que requerem aten??o
seletiva, transmiss?o de informa??es e consolida??o de mem?rias. Estudos recentes prop?em
que oscila??es gama alto (60 150 Hz) transferem informa??es espaciais do c?rtex entorrinal
medial para a regi?o CA1 do hipocampo atrav?s do acoplamento com a fase de teta (4 12
Hz). Apesar destas descobertas, entretanto, pouco se sabe sobre as caracter?sticas gerais dos
CFCs em diversas regi?es cerebrais. Neste trabalho, registramos potenciais de campo local
usando matrizes de multieletrodos implantadas no hipocampo dorsal para registro neural
cr?nico. O acoplamento fase-amplitude foi avaliado por meio da an?lise de comodulogramas,
uma ferramenta de CFC desenvolvida recentemente (Tort et al. 2008, Tort et al. 2010). Todas
as an?lises de dados foram realizadas em MATLAB (MathWorks Inc). Descrevemos duas
oscila??es funcionalmente distintas dentro da faixa de frequ?ncia de gama, ambas acopladas
ao ritmo teta durante explora??o ativa e sono REM: uma oscila??o com um pico de atividade
em ~80 Hz e uma mais r?pida centrada em ~140 Hz. As duas oscila??es s?o diferencialmente
moduladas pela fase de teta conforme a camada de CA1; o acoplamento teta-80 Hz ? mais
forte no stratum lacunosum-moleculare, enquanto que o acoplamento teta-140 Hz ? mais forte
no stratum oriens-alveus. Este perfil laminar sugere que a oscila??o de 80 Hz origina-se das
entradas do c?rtex entorrinal para as camadas profundas de CA1, e que a oscila??o de 140 Hz
reflete a atividade de CA1 em camadas superficiais. Ademais, n?s mostramos que a oscila??o
de 140 Hz difere-se das oscila??es ripples associadas com sharp-waves em diversos aspectos
chave. Nossos resultados demonstram a exist?ncia de novas oscila??es de alta frequ?ncia
associadas ? teta e sugerem uma redefini??o das oscila??es gama alto
|
Page generated in 0.5127 seconds