• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Behavioral, molecular and electrophysiological characterization of the learning and memory deficits induced in mouse models of Alzheimer’s disease / Caractérisations comportementales, moléculaires et électrophysiologiques des déficits mnésiques induits à l’aide de modèles murins de la maladie d’Alzheimer

Hadzibegovic, Senka 10 September 2015 (has links)
La maladie d’Alzheimer (MA) se caractérise par une perte des fonctions cognitives liée à une dégénérescence neuronale induite par l’accumulation de peptides amyloïdes-β (Aβs) dans des régions vulnérables du cerveau comme l’hippocampe. Au niveau moléculaire, les peptides Aβs se lient préférentiellement à la densité post-synaptique des synapses excitatrices, espace au niveau duquel la protéine d’échafaudage PSD-95 organise l’ancrage des récepteurs NMDA (RNMDAs) et régule leur mobilité membranaire. A l’aide d’une stratégie intégrative qui favorise des niveaux d’analyse verticaux (du phénotype aux événements moléculaires) et qui combine un ensemble d’approches corrélatives et invasives chez des souris double transgéniques APPswe/PS1dE9 modèles de la MA, nous avons mis en évidence que les peptides Aβs déstabilisent l’organisation synaptique (altération de l’expression de la PSD-95) et augmentent le pool extrasynaptique de sous-unités GluN2B des RNMDAs dans l’hippocampe. Cette réorganisation se traduit par une perturbation des fonctions mnésiques. Par ailleurs, il a été montré que certaines oscillations de l’activité hippocampique, comme les « sharp-wave ripples » (SWRs) générées pendant les périodes de sommeil, jouent un rôle crucial dans la formation de la mémoire. De façon surprenante, l’accumulation des peptides Aβs semble épargner la dynamique d’expression des SWRs durant les comportements de routine. Afin d’examiner l’effet potentiel des Aβs sur les SWRs chez des animaux confrontés à des challenges cognitifs, nous avons soumis des souris adultes injectées intracérébralement avec une solution d’Aβs à un test de reconnaissance spatiale. Alors qu’elles sont capables de former une mémoire à court terme, les souris Aβs montrent un oubli plus rapide, suggérant qu’elles encodent avec succès, mais qu’elles sont incapables de stabiliser et de rappeler une information acquise antérieurement. En l’absence d’une demande cognitive préalable, les propriétés des SWRs ne sont pas altérées par les Aβs. En revanche, lorsqu’elles doivent résoudre un test cognitif, les pics de SWRs normalement observés après encodage ou reconnaissance chez les souris témoins sont abolis chez les souris Aβs, indiquant une perturbation du traitement hippocampique de l’information spatiale. Pris dans leur ensemble, ces résultats identifient deux nouveaux mécanismes délétères sous-tendant les déficits de mémoire spatiale associés à la MA. / Cognitive impairments in Alzheimer’s disease (AD) are thought to be related to degenerative synaptic changes caused by the accumulation of amyloid-β peptides (Aβs) in vulnerable brain regions such as the hippocampus. At the molecular level, Aβs bind preferentially to the postsynaptic density of neuronal excitatory synapses, where the scaffolding post-synaptic protein-95 (PSD-95) organizes NMDA receptor (NMDAR) location as well as its downstream signaling. By using an integrative strategy which favoured vertical levels of analyses (from phenotype to molecular events) and combined a set of interrelated correlative and invasive approaches in a double transgenic mouse model of AD (APPswe/PS1dE9 mice), we were successful in establishing that Aβs destabilize the synaptic organization (reduction of expression of PSD-95) and increase the extrasynaptic pool of GluN2B-containing NMDAR in the hippocampus, a reorganization which translates into impaired memory functions. It is also well-known that hippocampal sharp wave-ripples (SWRs) generated during sleep periods are crucial for memory formation but accumulation of soluble Aβs, surprisingly seems to spare SWR dynamics during routine behavior. To unravel a potential effect of Aβs on SWRs in cognitively-challenged animals, we submitted vehicle- and Aβ-injected mice to spatial recognition memory testing. While capable of forming short-term memory, Aβ mice exhibited faster forgetting, suggesting successful encoding but an inability to adequately stabilize and/or retrieve previously acquired information. Without prior cognitive requirements, similar properties of SWRs were observed in both groups. In contrast, when cognitively challenged, the post-encoding and -recognition peaks in SWR occurrence observed in controls were abolished in Aβ mice, indicating impaired hippocampal processing of spatial information. Altogether these results identify two new disruptive mechanisms for the spatial memory deficits associated with AD.
2

Contribution of hippocampal diaschisis to the memory deficits associated with focal cerebral ischemia in the rat : converging behavioral, electrophysiological and functional evidence / Contribution du phénomène de diaschisis hippocampique aux déficits mnésiques associés à l’ischémie cérébrale focale chez le rat : convergences comportementale, électrophysiologique et fonctionnelle

Rabiller, Gratianne 21 December 2015 (has links)
Les mécanismes impliqués dans les troubles cognitifs induits à la suite d’une ischémie cérébrale (IC) demeurent mal compris. En plus du cœur ischémique nécrosé et de la zone de pénombre entourant cette lésion, certaines régions éloignées de la zone ischémique peuvent être fonctionnellement affectées, un phénomène connu sous le nom de «diaschisis». Sachant qu’il existe de fortes interactions fonctionnelles entre l’hippocampe (HPC) et le cortex lors des processus mnésiques, nous avons émis la possibilité que les troubles mnésiques survenant après une IC focale qui préserve l’intégrité de l’HPC, auraient pour origine une perturbation de la connectivité cortico-hippocampique conduisant à un hypofonctionnement hippocampique induit par le phénomène de diaschisis. Afin d’éprouver cette hypothèse, nous avons utilisé le modèle d’occlusion permanente de l'artère cérébrale moyenne chez le rat (OPACM) qui reproduit l’ischémie cérébrale focale humaine. Dans ce modèle, le cortex somato-sensoriel (SS) est endommagé unilatéralement alors que l’intégrité de l’HPC est préservé. Les rats OPACM ont montré une diminution de l’expression du gène c-fos dans l’HPC lors de l'exploration d'un nouvel environnement, indiquant une hypoactivation neuronale. Les rats OPACM ont également présenté une perturbation des mémoires olfactive associative et spatiale lors des tests de transmission sociale de préférence alimentaire (TSPA) et du Barnes maze, respectivement. Afin de confirmer que l’hypofonctionnement hippocampique induit par l’IC résultait d’une réduction des afférences corticales («déactivation») provenant du cortex endommagé, nous avons réalisé des inactivations pharmacologiques spécifiques du cortex SS et ou de l’HPC par injection de lidocaïne ou de CNQX. Ces injections ont induit une hypoactivation hippocampique (réduction du nombre de noyaux Fos-positifs) associée à une perturbation mnésique dans le test de TSPA. L'activité hippocampique chez des rats anesthésiés pendant l’IC ou deux semaines après, ainsi que lors de l’inactivation pharmacologique du cortex SS, a également été examinée par une approche électrophysiologique. Les résultats ont montré une altération de la fréquence d’apparition des «sharp-wave ripples» hippocampiques et révélé une instabilité de la fréquence thêta hippocampique lors de la reperfusion ou deux semaines après IC, ainsi que lors de l’inactivation corticale, suggérant une altération de la dynamique d’interaction entre l’HPC et le cortex. Pris dans leur ensemble, ces résultats identifient le phénomène de diaschisis hippocampique comme un mécanisme crucial impliqué dans l’hypofonctionnement hippocampique et les déficits mnésiques observés après une IC. / The cognitive consequences and the underlying mechanisms leading to cognitive impairments after cerebrovascular occlusive diseases are still unclear. In addition to the infarct zone that suffer the deadly consequence of ischemic stroke, the penumbra surrounding the lesion site and some brain regions more remote to the ischemic areas can be functionally affected by the insult. This phenomenon is referred to as diaschisis. In light of the importance of interactions between hippocampus and cortex during memory processing, we hypothesized that the cognitive impairments observed following focal ischemia could occur in the absence of direct hippocampal insult, possibly via impaired connectivity within cortico-hippocampal networks leading to diaschisis-induced hypofunctioning in specific hippocampal subregions. To examine this possibility, we used the distal middle cerebral artery occlusion (dMCAO) ischemic model in rats which induces restricted cortical infarct in the somatosensory (SS) cortex in the absence of direct hippocampal injury. dMCAO rats exhibited reduced expression of the activity-dependent gene c-fos in the hippocampus when exploring a novel environment, indicating neuronal hypoactivation. Ischemic rats also showed impaired associative olfactory and spatial memory when tested in the social transmission of food preference (STFP) task and the Barnes maze test, respectively. To confirm that the ischemic-induced hippocampal hypofunctioning resulted from reduced afferent inputs (i.e. deactivation) originating in the damaged cortex, we performed region-specific pharmacological inactivation of SS and/or HPC using lidocaine or CNQX. Fos imaging revealed that these treatments induced hippocampal hypoactivation and impaired memory performance as measured in the STFP task. We additionally performed electrophysiological recordings of hippocampal activity in anesthetized rats during acute stroke and two weeks later or after SS cortex inactivation. We found an alteration in the occurrence of sharp-wave ripples associated with instability of theta frequency during reperfusion after stroke and SS cortex inactivation, suggesting an alteration in the dynamics of hippocampal-cortical interactions. Taken collectively, these findings identify hippocampal diaschisis as a crucial mechanism for mediating stroke-induced hippocampal hypofunction and associated memory deficits.
3

Caracteriza??o dos acoplamentos fase-amplitude na regi?o CA1 do hopocampo

Teixeira, Robson Scheffer 02 December 2011 (has links)
Made available in DSpace on 2014-12-17T15:28:49Z (GMT). No. of bitstreams: 1 RobsonST_DISSERT.pdf: 350196 bytes, checksum: eaf6055553dc1f6cec39e0f754c20635 (MD5) Previous issue date: 2011-12-02 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Brain oscillation are not completely independent, but able to interact with each other through cross-frequency coupling (CFC) in at least four different ways: power-to-power, phase-to-phase, phase-to-frequency and phase-to-power. Recent evidence suggests that not only the rhythms per se, but also their interactions are involved in the execution of cognitive tasks, mainly those requiring selective attention, information flow and memory consolidation. It was recently proposed that fast gamma oscillations (60 150 Hz) convey spatial information from the medial entorhinal cortex to the CA1 region of the hippocampus by means of theta (4-12 Hz) phase coupling. Despite these findings, however, little is known about general characteristics of CFCs in several brain regions. In this work we recorded local field potentials using multielectrode arrays aimed at the CA1 region of the dorsal hippocampus for chronic recording. Cross-frequency coupling was evaluated by using comodulogram analysis, a CFC tool recently developted (Tort et al. 2008, Tort et al. 2010). All data analyses were performed using MATLAB (MathWorks Inc). Here we describe two functionally distinct oscillations within the fast gamma frequency range, both coupled to the theta rhythm during active exploration and REM sleep: an oscillation with peak activity at ~80 Hz, and a faster oscillation centered at ~140 Hz. The two oscillations are differentially modulated by the phase of theta depending on the CA1 layer; theta-80 Hz coupling is strongest at stratum lacunosum-moleculare, while theta-140 Hz coupling is strongest at stratum oriens-alveus. This laminar profile suggests that the ~80 Hz oscillation originates from entorhinal cortex inputs to deeper CA1 layers, while the ~140 Hz oscillation reflects CA1 activity in superficial layers. We further show that the ~140 Hz oscillation differs from sharp-wave associated ripple oscillations in several key characteristics. Our results demonstrate the existence of novel theta-associated high-frequency oscillations, and suggest a redefinition of fast gamma oscillations / As oscila??es cerebrais n?o s?o completamente independentes, mas capazes de interagir umas com as outras atrav?s de acoplamentos entre frequ?ncias (cross-frequency coupling, doravante CFC) em pelo menos quatro diferentes modalidades: amplitudeamplitude, fase-fase (coer?ncia), fase-frequ?ncia e fase-amplitude. Evid?ncias recentes sugerem que n?o somente os ritmos per se, mas tamb?m as intera??es entre eles est?o envolvidas na execu??o de tarefas cognitivas, principalmente aquelas que requerem aten??o seletiva, transmiss?o de informa??es e consolida??o de mem?rias. Estudos recentes prop?em que oscila??es gama alto (60 150 Hz) transferem informa??es espaciais do c?rtex entorrinal medial para a regi?o CA1 do hipocampo atrav?s do acoplamento com a fase de teta (4 12 Hz). Apesar destas descobertas, entretanto, pouco se sabe sobre as caracter?sticas gerais dos CFCs em diversas regi?es cerebrais. Neste trabalho, registramos potenciais de campo local usando matrizes de multieletrodos implantadas no hipocampo dorsal para registro neural cr?nico. O acoplamento fase-amplitude foi avaliado por meio da an?lise de comodulogramas, uma ferramenta de CFC desenvolvida recentemente (Tort et al. 2008, Tort et al. 2010). Todas as an?lises de dados foram realizadas em MATLAB (MathWorks Inc). Descrevemos duas oscila??es funcionalmente distintas dentro da faixa de frequ?ncia de gama, ambas acopladas ao ritmo teta durante explora??o ativa e sono REM: uma oscila??o com um pico de atividade em ~80 Hz e uma mais r?pida centrada em ~140 Hz. As duas oscila??es s?o diferencialmente moduladas pela fase de teta conforme a camada de CA1; o acoplamento teta-80 Hz ? mais forte no stratum lacunosum-moleculare, enquanto que o acoplamento teta-140 Hz ? mais forte no stratum oriens-alveus. Este perfil laminar sugere que a oscila??o de 80 Hz origina-se das entradas do c?rtex entorrinal para as camadas profundas de CA1, e que a oscila??o de 140 Hz reflete a atividade de CA1 em camadas superficiais. Ademais, n?s mostramos que a oscila??o de 140 Hz difere-se das oscila??es ripples associadas com sharp-waves em diversos aspectos chave. Nossos resultados demonstram a exist?ncia de novas oscila??es de alta frequ?ncia associadas ? teta e sugerem uma redefini??o das oscila??es gama alto

Page generated in 0.1256 seconds