• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1379
  • 529
  • 395
  • 188
  • 130
  • 38
  • 38
  • 32
  • 30
  • 24
  • 19
  • 12
  • 11
  • 11
  • 11
  • Tagged with
  • 3546
  • 400
  • 387
  • 380
  • 378
  • 329
  • 303
  • 300
  • 279
  • 262
  • 247
  • 240
  • 227
  • 147
  • 143
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

The adjoint method of optimal control for the acoustic monitoring of a shallow water environment/La méthode adjointe de contrôle optimal pour la caractérisation acoustique d'un environnement petits fonds.

Meyer, Matthias 19 December 2007 (has links)
Originally developed in the 1970s for the optimal control of systems governed by partial differential equations, the adjoint method has found several successful applications, e.g., in meteorology with large-scale 3D or 4D atmospheric data assimilation schemes, for carbon cycle data assimilation in biogeochemistry and climate research, or in oceanographic modelling with efficient adjoint codes of ocean general circulation models. Despite the variety of applications in these research fields, adjoint methods have only very recently drawn attention from the ocean acoustics community. In ocean acoustic tomography and geoacoustic inversion, where the inverse problem is to recover unknown acoustic properties of the water column and the seabed from acoustic transmission data, the solution approaches are typically based on travel time inversion or standard matched-field processing in combination with metaheuristics for global optimization. In order to complement the adjoint schemes already in use in meteorology and oceanography with an ocean acoustic component, this thesis is concerned with the development of the adjoint of a full-field acoustic propagation model for shallow water environments. In view of the increasing importance of global ocean observing systems such as the European Seas Observatory Network, the Arctic Ocean Observing System and Maritime Rapid Environmental Assessment (MREA) systems for defence and security applications, the adjoint of an ocean acoustic propagation model can become an integral part of a coupled oceanographic and acoustic data assimilation scheme in the future. Given the acoustic pressure field measured on a vertical hydrophone array and a modelled replica field that is calculated for a specific parametrization of the environment, the developed adjoint model backpropagates the mismatch (residual) between the measured and predicted field from the receiver array towards the source. The backpropagated error field is then converted into an estimate of the exact gradient of the objective function with respect to any of the relevant physical parameters of the environment including the sound speed structure in the water column and densities, compressional/shear sound speeds, and attenuations of the sediment layers and the sub-bottom halfspace. The resulting environmental gradients can be used in combination with gradient descent methods such as conjugate gradient, or Newton-type optimization methods tolocate the error surface minimum via a series of iterations. This is particularly attractive for monitoring slowly varying environments, where the gradient information can be used to track the environmental parameters continuously over time and space. In shallow water environments, where an accurate treatment of the acoustic interaction with the bottom is of outmost importance for a correct prediction of the sound field, and field data are often recorded on non-fully populated arrays, there is an inherent need for observation over a broad range of frequencies. For this purpose, the adjoint-based approach is generalized for a joint optimization across multiple frequencies and special attention is devoted to regularization methods that incorporate additional information about the desired solution in order to stabilize the optimization process. Starting with an analytical formulation of the multiple-frequency adjoint approach for parabolic-type approximations, the adjoint method is progressively tailored in the course of the thesis towards a realistic wide-angle parabolic equation propagation model and the treatment of fully nonlocal impedance boundary conditions. A semi-automatic adjoint generation via modular graph approach enables the direct inversion of both the geoacoustic parameters embedded in the discrete nonlocal boundary condition and the acoustic properties of the water column. Several case studies based on environmental data obtained in Mediterranean shallow waters are used in the thesis to assess the capabilities of adjoint-based acoustic inversion for different experimental configurations, particularly taking into account sparse array geometries and partial depth coverage of the water column. The numerical implementation of the approach is found to be robust, provided that the initial guesses are not too far from the desired solution, and accurate, and converges in a small number of iterations. During the multi-frequency optimization process, the evolution of the control parameters displays a parameter hierarchy which clearly relates to the relative sensitivity of the acoustic pressure field to the physical parameters. The actual validation of the adjoint-generated environmental gradients for acoustic monitoring of a shallow water environment is based on acoustic and oceanographic data from the Yellow Shark '94 and the MREA '07 sea trials, conducted in the Tyrrhenian Sea, south of the island of Elba. Starting from an initial guess of the environmental control parameters, either obtained through acoustic inversion with global search or supported by archival in-situ data, the adjoint method provides an efficient means to adjust local changes with a couple of iterations and monitor the environmental properties over a series of inversions. In this thesis the adjoint-based approach is used, e.g., to fine-tune up to eight bottom geoacoustic parameters of a shallow-water environment and to track the time-varying sound speed profile in the water column. In the same way the approach can be extended to track the spatial water column and bottom structure using a mobile network of sparse arrays. Work is currently being focused on the inclusion of the adjoint approach into hybrid optimization schemes or ensemble predictions, as an essential building block in a combined ocean acoustic data assimilation framework and the subsequent validation of the acoustic monitoring capabilities with long-term experimental data in shallow water environments.
552

Acoustic properties of toroidal bubbles and construction of a large apparatus

Harris, Ashley M. 03 1900 (has links)
Approved for public release, distribution is unlimited / When a burst of air is produced in water, the result can be a toroidal bubble. This thesis is concerned with experimental investigations of three acoustical properties of toroidal bubbles: (i) propagation through high-intensity noise, (ii) emission, and (iii) scattering. In (i), an attempt to observe a recent prediction of the acoustic drag on a bubble is described, which is analogous to the Einstein-Hopf effect for an oscillating electric dipole in a fluctuating electromagnetic field. No effect was observed, which may be due to insufficient amplitude of the noise. In (ii), observations of acoustic emissions of volume oscillations of toroidal bubbles are reported. Surprisingly, the emission occurs primarily during the formation of a bubble, and is weak in the case of very smooth toroidal bubbles. In (iii), we describe an experiment to observe the effect of a toroidal bubble on an incident sound field. In addition to the acoustical investigations, we describe the construction of a large hallway apparatus for further investigations and for hands-on use by the public. The tank has cross section 2 feet by 2 feet and height 6 feet, and the parameters of reservoir pressure and time between air bursts are adjustable by the observer. / Lieutenant, United States Navy
553

Acoustic scattering by cylindrical scatterers comprising isotropic fluid and orthotropic elastic layers

Bao, Chunyan January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Liang-Wu Cai / Acoustic scattering by a cylindrical scatterer comprising isotropic acoustic and orthotropic elastic layers is theoretically solved. The orthotropic material is used for the scattering problem because the sound speeds along radial and tangential axes can be different; which is an important property for acoustic cloaking design. A computational system is built for verifying the solutions and conducting simulations. Scattering solutions are obtained based on two theoretical developments. The first one is exact solutions for elastic waves in cylindrically orthotropic elastic media, which are solved using Frobenius method. The second theoretical development is a set of two canonical problems for acoustic-orthotropic-acoustic media. Based on the two theoretical developments, scattering by three specially selected simple multilayer scatterers are analyzed via multiple-scattering approach. Solutions for the three scatterers are then used for solving a “general” multilayer scatterer through a recursive solution procedure. The word “general” means the scatterer can have an arbitrary number of layers and each layer can be either isotropic acoustic or orthotropic elastic. No approximations have been used in the process. The resulting analytically-exact solutions are implemented and verified. As an application example, acoustic scattering by a scatterer with a single orthotropic layer is presented. The effects on the scattering due to changing parameters of the orthotropic layer are studied. Acoustic scattering by a specially designed multilayer scatterer is also numerically simulated. Ratios of the sound speeds of the orthotropic layers along r and θ directions are defined to satisfy the requirement of the Cummer-Schurig cloaking design. The simulations demonstrate that both the formalism and the computational implementation of the scattering solutions are correct.
554

Acoustic tracking of an unmanned underwater vehicle using a passive ultrashort baseline array and a single long baseline beacon

Unknown Date (has links)
This thesis discusses a new approach to tracking the REMUS 100 AUV using a modified version of the Florida Atlantic University (FAU) ultrashort baseline (USBL) acoustic positioning system (APS). The REMUS 100 is designed to utilize a long baseline (LBL) acoustic positioning system to obtain positioning data in mid-mission. If the placement of one of the transponders of the LBL field is known, then tracking the position of the REMUS 100 AUV using a passive USBL array is possible. As part of the research for this thesis, the FAU USBL system was used to find a relative range between the REMUS 100 ranger and a LBL transponder. This relative range was then combined with direction of arrival information and LBL field component position information to determine an absolute position of the REMUS 100 ranger. The outcome was the demonstration of a passive USBL based tracking system. / by Kyle L. Seaton. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
555

Estudo da força de radiação acústica em partículas produzida por ondas progressivas e estacionárias. / Acoustic radiation force on particles produced by progressive and standing waves.

Andrade, Marco Aurélio Brizzotti 28 January 2010 (has links)
O objetivo deste trabalho é estudar o fenômeno da força de radiação acústica produzida por ondas progressivas e estacionárias. Neste trabalho o estudo da força produzida por ondas estacionárias é aplicado na análise de um levitador acústico e o estudo da força de radiação acústica por ondas progressivas é feito visando a futura construção de um separador acústico. Neste trabalho é utilizado o método dos elementos finitos para simular o comportamento de um levitador acústico. Primeiramente, é feita a simulação de um levitador acústico que consiste de um transdutor de Langevin com uma face de emissão plana que opera na freqüência de aproximadamente 20 kHz e um refletor plano. O método dos elementos finitos é utilizado para determinar o deslocamento da face do transdutor e o potencial acústico que atua numa esfera pequena. O deslocamento da face do transdutor obtido numericamente é comparado com o medido experimentalmente por um vibrômetro de fibra ótica e o potencial acústico determinado pelo método dos elementos é verificado experimentalmente colocando pequenas esferas de isopor no levitador. Depois de verificar o modelo numérico, o método dos elementos finitos é utilizado na otimização de um levitador acústico composto de um refletor côncavo e um transdutor com face de emissão côncava. Os resultados numéricos mostram que a força de radiação acústica no novo levitador é aumentada em 604 vezes quando comparada com o levitador composto de um transdutor com face plana e refletor plano. Este trabalho também apresenta um modelo numérico para determinar a trajetória de partículas esféricas na presença de uma onda de ultra-som progressiva. O modelo assume que as seguintes forças atuam na partícula: gravidade, empuxo, forças viscosas e força de radiação acústica devido a uma onda progressiva. Com o objetivo de não restringir o tamanho das partículas que podem ser utilizadas no modelo é empregada uma equação empírica do coeficiente de arrasto, válida para uma grande faixa de número de Reynolds. O modelo proposto requer a distribuição de pressão gerada pelo transdutor de ultra-som. A distribuição de pressão é medida experimentalmente utilizando um hidrofone calibrado. A verificação do modelo é feita soltando-se pequenas esferas de vidro (com diâmetros da ordem de 500 m) em frente a um transdutor de ultra-som de 1 MHz e 35 mm de diâmetro. / The objective of this work is to study the acoustic radiation force produced by progressive and standing waves. In this work, the studies related to the acoustic radiation force generated by ultrasonic standing waves are applied in the analysis of an acoustic levitator and the studies involving the acoustic radiation force generated by progressive waves are conducted aiming the design of acoustic separators. In this work, the finite element method is used to simulate an acoustic levitator. First, an acoustic levitator consisting of a 20 kHz Langevin ultrasonic transducer with a plane radiating surface and a plane reflector is simulated by the finite element method. The finite element method is used to determine the transducer face displacement and the acoustic radiation potential that acts on a small sphere. The numerical displacement is compared with that obtained by a fiber-optic vibration sensor and the acoustic radiation potential determined by the finite element method is verified experimentally by placing small Styrofoam spheres in the levitator. After verifying the numerical method, the finite element method was used to optimize an acoustic levitator consisting of a concave-faced transducer and a curved reflector. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. This work also presents a numerical model to determine the trajectory of sphere particles when submitted to ultrasonic progressive waves. This model assumes that the following forces act on the particle: gravity, buoyancy, viscous forces and acoustic radiation force due to the progressive wave. In order not to restrict the model to a small particle size range, the viscous forces that act on the sphere are modeled by an empirical relationship of drag coefficient that is valid for a wide range of Reynolds numbers. The numerical model requires the pressure field radiated by the ultrasonic transducer. The pressure field is obtained experimentally by using a calibrated needle hydrophone. The numerical model validation is done by dropping small glass spheres (on the order of 500 m diameter) in front of a 1-MHz 35-mm diameter ultrasonic transducer.
556

Homogenization of Acoustic Wave Propagation in a Magnetorheological Fluid

Reese, Owein 30 April 2004 (has links)
We formulate a model for acoustic excitations in a magnetorheological fluid. Constitutive equations are derived for Navier-Stokes flow coupled with Maxwell's Equations. The viscosity of the fluid is modified to reflect the dependence of waves propagating within the fluid itself and in the case where they propagate along the network of particles.
557

Use of Phase and Amplitude Gradient Estimation for Acoustic Source Characterization and Localization

Lawrence, Joseph Scott 01 July 2018 (has links)
Energy-based acoustic quantities provide vital information about acoustic fields and the characterization of acoustic sources. Recently, the phase and amplitude gradient estimator (PAGE) method has been developed to reduce error and extend bandwidth of energy-based quantity estimates. To inform uses and applications of the method, analytical and experimental characterizations of the method are presented. Analytical PAGE method bias errors are compared with those of traditional estimation for two- and three-microphone one-dimensional probes. For a monopole field when phase unwrapping is possible, zero bias error is achieved for active intensity using three-microphone PAGE and for specific acoustic impedance using two-microphone PAGE. A method for higher-order estimation in reactive fields is developed, and it is shown that a higher-order traditional method outperforms higher-order PAGE for reactive intensity in a standing wave field. Extending the applications of PAGE, the unwrapped phase gradient is used to develop a method for directional sensing with improved bandwidth and arbitrary array response.
558

Acoustic Signal Processing Algorithms for Reverberant Environments

Betlehem, Terence, terenceb@rsise.anu.edu.au January 2005 (has links)
This thesis investigates the design and the analysis of acoustic signal processing algorithms in reverberant rooms. Reverberation poses a major challenge to acoustic signal processing problems. It degrades speech intelligibility and causes many acoustic algorithms that process sound to perform poorly. Current solutions to the reverberation problem frequently only work in lightly reverberant environments. There is need to improve the reverberant performance of acoustic algorithms.¶ The approach of this thesis is to explore how the intrinsic properties of reverberation can be exploited to improve acoustic signal processing algorithms. A general approach to soundfield modelling using statistical room acoustics is applied to analyze the reverberant performance of several acoustic algorithms. A model of the underlying structure of reverberation is incorporated to create a new method of soundfield reproduction.¶ Several outcomes resulting from this approach are: (i) a study of how more sound capture with directional microphones and beamformers can improve the robustness of acoustic equalization, (ii) an assessment of the extent to which source tracking can improve accuracy of source localization, (iii) a new method of soundfield reproduction for reverberant rooms, based upon a parametrization of the acoustic transfer function and (iv) a study of beamforming to directional sources, specifically exploiting the directionality of human speech.¶ The approach to soundfield modelling has permitted a study of algorithm performance on important parameters of the room acoustics and the algorithm design. The performance of acoustic equalization and source tracking have been found to depend not only on the levels of reverberation but also on the correlation of pressure between points in reverberant soundfields. This correlation can be increased by sound capture with directional capture devices. Work on soundfield reproduction has shown that, though reverberation significantly degrades the performance of conventional techniques, by accounting for the reverberation it is possible to design reproduction methods that function well in reverberant environments.
559

Sensing systems for active control of sound transmission into cavities

Cazzolato, Ben January 1999 (has links)
Driven by the need to reduce the sound transmitted into aircraft cabins from the power plant, this thesis investigates the active control of sound transmitted through a structure into coupled enclosures. In particular, it examines alternatives to conventional microphone and accelerometer error sensors. This study establishes a design framework for the development and analysis of an active noise control system which can be applied to any complex vibro-acoustic system. The design approach has focused on using techniques presently used in industry to enable the transfer of the active noise control technology from the research stage into practical noise control systems. The structural and acoustic sub-systems are modelled using FEA to estimate the in vacuo structural modal response of the structure and the acoustic pressure modal response (with rigid boundary conditions) of the interior cavity. The acoustic and structural systems are then coupled using modal coupling theory. Within this framework, two novel error sensors aimed at overcoming observability problems suffered by traditional microphone and accelerometer sensors are investigated: namely, acoustic energy density sensors and shaped radiation modal vibration sensors. The principles of the measurement of energy density are discussed and the errors arising from its measurement using two and three-microphone sensor configurations are considered for a one-dimensional reactive sound field and a plane wave sound field. The error analysis encompasses finite separation effects, instrumentation errors (phase and sensitivity mismatches, and physical length errors), diffraction and interference effects, and other sources of error (mean flow and turbulence, temperature and humidity, statistical effects). Following the one-dimensional study, four 3-axis energy density sensor designs are proposed and error analysis is conducted over the same acoustic fields as for the one-dimensional study. The design and construction of the simplest arrangement of the 4 three-axis sensors is discussed with reference to design issues, performance and limitations. The strategy of using energy density control is investigated numerically for a purely acoustic system and a coupled panel-cavity system. Energy density control is shown to provide greater local and global control compared to that possible using an equivalent number of microphones. The performance of the control system is shown to be relatively insensitive to the placement of the energy density sensor. For an enclosed cavity system with high modal overlap, the zone of local control achieved by minimising energy density is found to be approximately the same as the zone of local control obtained when min-imising pressure and pressure gradient in a diffuse sound field. It is also shown that if there is only one control source used per energy density sensor, global control will be almost optimum. The addition of further control sources leads to an improvement in global control, however, the control is no longer optimal. The control system is found to be very tolerant of errors in the estimate of the energy density and thus the use of simpler energy density sensor designs is justified. Finally, an experiment is presented in which the global performance achieved by controlling a three-axis energy density sensor is compared with the performance achieved by minimising the acoustic potential energy and minimising the sum of squared pressures at a finite number of microphones. The experimental results are found to reflect the numerical results. The active minimisation of harmonic sound transmission into an arbitrarily shaped enclosure using error signals derived from structural vibration sensors is investigated numerically and experimentally. It is shown that by considering the dynamics of the coupled system, it is possible to derive a set of "e;structural radiation"e; modes which are orthogonal with respect to the global potential energy of the coupled acoustic space and which can be sensed by structural vibration sensors. Minimisation of the amplitudes of the "e;radiation modes"e; is thus guaranteed to minimise the interior acoustic potential energy. The coupled vibro-acoustic system under investigation is modelled using Finite Element Analysis which allows systems with complex geometries to be investigated rather than limiting the analysis to simple, analytically tractable systems. Issues regarding the practical implementation of sensing the orthonormal sets of structural radiation modes are discussed. Specific examples relating to the minimisation of the total acoustic potential energy within a curved rectangular panel and a coupled cavity are given, comparing the performance offered using vibration sensing of the radiation modes on the structure with the more traditional error sensing; namely, the discrete sensing of the structural kinetic energy on the structural boundary and the acoustic potential energy in the enclosed space approximated by the mean squared pressures at several locations. / Thesis (Ph.D.)--Mechanical Engineering, 1999.
560

Design and Experimental Applications of Acoustic Metamaterials

Zigoneanu, Lucian January 2013 (has links)
<p>Acoustic metamaterials are engineered materials that were extensively investigated over the last years mainly because they promise properties otherwise hard or impossible to find in nature. Consequently, they open the door for improved or completely new applications (e.g. acoustic superlens that can exceed the diffraction limit in imaging or acoustic absorbing panels with higher transmission loss and smaller thickness than regular absorbers). Our objective is to surpass the limited frequency</p><p>operating range imposed by the resonant mechanism that s1ome of these materials have. In addition, we want acoustic metamaterials that could be experimentally demonstrated and used to build devices with overall performances better than the previous ones reported in the literature.</p><p>Here, we start by focusing on the need of engineered metamaterials in general and acoustic metamaterials in particular. Also, the similarities between electromagnetic metamaterials and acoustic metamaterials and possible ways to realize broadband acoustic metamaterials are briefly discussed. Then, we present the experimental realization</p><p>and characterization of a two-dimensional (2D) broadband acoustic metamaterial with strongly anisotropic effective mass density. We use this metamaterial to realize a 2D broadband gradient index acoustic lens in air. Furthermore, we optimize the lens design by improving each unit cell's performance and we also realize a 2D acoustic ground cloak in air. In addition, we explore the performance of some novel applications (a 2D acoustic black hole and a three-dimensional acoustic cloak) using the currently available acoustic metamaterials. In order to overcome the limitations of our designs, we approach the active acoustic metamaterials path, which offers a broader range for the material parameters values and a better control over them. We propose two structures which contain a sensing element (microphone) and an acoustic driver (piezoelectric membrane or speaker). The material properties are controlled by tuning the response of the unit cell to the incident wave. Several samples with interesting effective mass density and bulk modulus are presented. We conclude by suggesting few natural directions that could be followed for the future research based on the theoretical and experimental results presented in this work.</p> / Dissertation

Page generated in 0.0692 seconds