• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acoustic behavior and ecology of the Resplendent Quetzal Pharomachrus mocinno, a flagship tropical bird species / Comportement et écologie sonore du Quetzal Resplendissant Pharomachrus mocinno, une espèce porte-drapeau d'oiseau tropical

Bolanos Sittler, Pablo Rafael 18 January 2019 (has links)
Le Quetzal Resplendissant Pharomachrus mocinno est une espèce d’oiseau tropical considérée fortement menacée par la perte de son habitat due aux activités humaines. Le Quetzal Resplendissant joue un rôle important de disperseur de graines et constitue le centre de la culture maya passée et présente. Les recherches sur cette espèce couvrent plusieurs aspects de son histoire naturelle et de sa biologie. Néanmoins, à ce jour, il n’y a aucune description détaillée du comportement et de l’écologie acoustiques de cette espèce, condition préalable à une conservation efficace de l'espèce. L’objectif de cette thèse a été d’étudier tout particulièrement le comportement et l’écologie acoustique de P. mocino dans la forêt nuageuse du Guatemala. Une analyse détaillée des vocalisations de P. mocinno, incluant des expériences de propagation de ses vocalisations dans son habitat, a permis d’identifier deux types de vocalisations destinés à la communication à longue distance et deux autres types de vocalisations destinés à la communication à courte distance. La quantification des différences dans les vocalisations territoriales des deux sous-espèces de Quetzals Resplendissants, P. m. mocinno (partie nord de l’Amérique centrale et sud du Mexique) et P. m. costaricensis (sud de l'Amérique centrale) a révélé de nettes différences entre les sous-espèces, ce qui conforterait l'hypothèse d’espèces distinctes. L'observation de l'espèce dans la canopée dense est difficile et la manipulation des individus est controversée en raison de sa grande importance culturelle. De fait, un système acoustique automatique a été mis au point pour suivre l’espèce de manière non invasive. Le système s'est avéré efficace et a produit des résultats révélant des profils de suivis acoustiques en partie dépendants de variables environnementales. Enfin, la communauté acoustique des oiseaux à laquelle P. mocinno appartient a été analysée afin d’évaluer les interactions interspécifiques de compétition. Les recherches développées ici devraient aider aux décisions de conservation futures concernant le Quetzal Resplendissant et son habitat, la forêt nuageuse. Cette recherche montre également que l'écoacoustique peut constituer une stratégie utile pour aborder les problèmes d'écologie et de conservation dans les zones tropicales. / The Resplendent Quetzal Pharomachrus mocinno is a tropical bird considered in a high risk of danger. Degradation of its habitat caused by human activities is the principal menace. The Resplendent Quetzal is important as seed disperser and is the centre of the past and present Mayan culture. The available studies about the species have covered aspects of the natural history and biology. Nevertheless, the description of the acoustic behaviour and ecology, a prerequisite for the conservation of the species, was not available. The general aim of this PhD thesis was to investigate the acoustic behaviour and ecology of P. mocinno in the cloud forest of Guatemala. A detailed analysis of P. mocinno vocalizations, including propagation experiments of these vocalizations in its habitat, led to identify two vocalizations intended for long range, and two for short range communication. Quantification of acoustic parameters in territorial vocalizations of the two subspecies of the Resplendent Quetzal, P. m. mocinno (north part of Central America and Chiapas) and P. m. costaricensis (south part of Central America), revealed clear differences between the subspecies, that could support a species separation hypothesis. . The observation of the species in the dense canopy is difficult and manipulation of individuals is controversial due to its high cultural importance. Then, an automatic acoustic system was developed as a method to study the species in a non-invasive way. The system proved to be efficient and returned results that revealed acoustic patterns linked to environmental variables. Finally, the acoustic community of other bird species P. mocinno belongs to was analysed so that interspecific competition interactions could be assessed. The research here developed should help in future conservation decisions about the Resplendent Quetzal and its habitat, the cloud forest. This research also illustrates that ecoacoustics can be a valuable strategy to tackle ecology and conservation questions in tropical areas.
2

Call Diversity, Spatio-Temporal Patterning And Masking Interference In An Assemblage Of Acoustically Communicating Ensiferan Species Of A Tropical Evergreen Forest In Southern India

Diwakar, Swati January 2007 (has links)
The present study provides the first description of the calls of a multi-species ensiferan assemblage in a tropical evergreen forest of the Indian subcontinent. I have identified and described the calls of twenty ensiferan species constituting the nocturnal acoustic community of a tropical evergreen forest in KNP. I found that the multi-species ensiferan assemblage consisted of diverse taxa representing subfamilies of the families Gryllidae, Tettigoniidae and Anostostomatidae. Eight acoustically communicating species of the family Gryllidae were found. Two species belonged to the family Mogoplistidae. Interestingly, each subfamily was mostly represented by only one genus. In the tettigoniids, representative species were found only from subfamilies Pseudophyllinae, Phaneropterinae and Mecopodinae. The species richness of the acoustically communicating cricket assemblage in the tropical evergreen forest of Kudremukh was found to be low. This study did not include non-calling and ultrasonic species of crickets. The gryllid and tettigoniid species analyzed exhibited different frequency (both narrow and broadband) and temporal patterns. Species belonging to the family Gryllidae had narrow band calls (with bandwidths not greater than 1 kHz) and had dominant frequencies mainly between 3 and 7 kHz. The calls of tettigoniids covered a wide spectral range reaching far into the ultrasound in species of the genus Mecopoda. Interestingly, of nine tettigoniid species, the calls of four (Onomarchus sp., Phyllomimus sp., Brochopeplus sp. and ‘15 kHz’) were narrow band and in the audible range, similar to those of gryllids. Although there was a high overlap of call frequencies between 3 to 7 kHz, gryllid species separated in their syllable repetition rate, which varied from six syllables per second in Landreva to 60 syllables/second in Gryllitara. Species with overlapping syllable repetition rates of 10 – 20 syllables per second separated along the frequency axis. There were species such as those of Phaloria and Gryllitara, Scapsipedus, Xabea and Callogryllus that overlapped both in the spectral and syllable repetition rates. These species however, differed in the other temporal features such as call duration, call period and number of syllables per call. This study also provides the first description of the calls and stridulatory structures of an Indian weta species (Family Anostostomatidae). Both males and females of this species were found to stridulate. The calls of the two sexes had similar spectral features. Male calls consisted of four syllables each, while female calls were bisyllabic. Stridulatory structures were similar between the sexes. I also quantitatively validated the reliability of human listener - based psychoacoustic sampling as a technique to monitor species richness and relative abundance of acoustically communicating ensiferan species that are within the human hearing range. I have shown using controlled psychoacoustic tests in the laboratory that a trained listener is capable of identifying the species as well as the number of individuals of Ensifera with high accuracy. This study suggests that trained listener - based psychoacoustic sampling may be preferable to carry out rapid assessments and species inventories of gryllids and low frequency katydid species in tropical forests. My study also suggests that acoustic monitoring of Orthoptera should be done using both the trained listener - based spot sampling and ambient noise recordings using ultrasound detectors for accurately estimating species richness and relative abundance in an area. Using focal animal sampling, I have shown that most species in the tropical forest ensiferan assemblage of Kudremukh National Park did not move more than a metre in a span of half an hour. The acoustic sampling should be designed in such a way as to cause minimal disturbance to the calling animals and could be limited to ten minutes to avoid re-counting individuals and counter the problem of pseudoreplication. I also investigated the spatial dispersion of calling sites in the vertical dimension. This study revealed vertical stratification of the calling heights of the twenty ensiferan species. Calling heights of both gryllid and tettigoniid species ranged from the ground to the canopy, although more gryllid than tettigoniid species occupied the ground and herb layer. Post hoc comparisons and cluster analysis indicated the presence of discrete calling height layers corresponding to the canopy, understorey, herb and ground layer. These clusters emerged from the raw data of calling heights of individuals of each species without a priori distinction of layers. This is in contrast to other studies on vertical stratification in arthropods and bats where baits, traps and mist nets are placed at different vertical layers, thereby demarcating the layers beforehand. Previous studies on crickets, cicadas and frogs have shown preference for the height of calling sites qualitatively. To my knowledge, this is the first study to quantitatively establish vertical stratification in calling heights in an ensiferan assemblage of an evergreen forest. No correlation between the calling heights and mean dominant frequencies of the species were found. Cricket species with relatively low frequency calls (3–4 kHz) occupied both the ground layer (Callogryllus sp. and Scapsipedus sp.) and the canopy (Xabea sp. and Onomarchus sp) suggesting that these narrow-band, relatively low frequency signals may be optimal for sound transmission in the cluttered habitat of the forest floor (due to leaf litter) and the canopy (due to high leaf density). Species with high frequencies such as Brochopeplus sp. and ‘15 kHz’ called mainly from vegetation in the understorey. Species with broadband calls (Mecopoda sp., Pirmeda sp. and Elimaea sp.) called just above the ground layer and from the understorey suggesting that calls with higher frequencies and bandwidths may be used in the somewhat less-cluttered microhabitat of the understorey. Calling height stratification in the ensiferan assemblages of tropical forests could also be due to other ecological factors such as predation by spiders, mantises, bats, birds or primates. The wide range of duty cycles, presence of high duty cycle callers (such as Mecopoda) and the lack of correlation of duty cycle with calling height found in our study site are interesting. Studies on acoustic transmission in different microhabitats at different heights and on predation pressure on the ensiferan species will provide further insight into the selective forces influencing calling height stratification. The multi-species assemblage constituting the nocturnal acoustic community was found to be calling in the same time period between evening to midnight and no species was found to have a unique calling time that is different from that of another species. There was no diel partitioning of calling time between the acoustically communicating ensiferan species. Frogs and cicadas that can be considered as acoustic competitors of the ensiferan assemblage appeared to be separating from crickets on a seasonal and diel scale respectively. This study has quantified the amount of masking interference in three dimensions viz. temporal, fine temporal and spectral, between sixteen species belonging to the nocturnal acoustic ensiferan assemblage of an evergreen forest. Frequency histograms of overlap, bar graphs of overlap on a species by other species and Mantel’s test results on matrix correlation suggest negative relations between the temporal, fine-temporal and spectral overlaps. Species with high overlap in one dimension had very low levels of overlap in any of the other two dimensions, suggesting acoustic resource partitioning in the ensiferan assemblage of the evergreen forest. I also tried to quantify the extent of spatial overlap between species based on calling intensity and inter-specific distances. However, spatial overlap could not be analysed further as there were some species pairs for which I did not have the inter-individual distances despite carrying out the field work for six months. The procedure of estimating spatial overlap between species pairs and the result along with missing gaps is presented in appendix 2. It will be interesting to investigate the extent of spatial overlap between species pairs as the fourth dimension in which species could separate to avoid acoustic competition. It is also important to estimate the relative abundance of species in the evergreen forest to obtain a realistic representation of masking interference between species. Partitioning of acoustic resources among ensiferan assemblage could also be better explained by analysing all the dimensions.
3

Ecologie et diversité acoustique des milieux aquatiques : exploration en milieux tempérés / Acoustic diversity and ecology of freshwater environments : exploration in temperate environments

Desjonquères, Camille 21 November 2016 (has links)
Une grande diversité d’animaux produit des sons pour communiquer, s'orienter, ou lors de la réalisation d'actes comportementaux comme la prise de nourriture. Ces sons ne se répartissent pas aléatoirement dans l'espace et le temps suggérant l'existence de règles d'assemblage sonore qui structurent les populations et communautés acoustiques. Les environnements d'eau douce, et en particulier les mares, sont considérés comme les réservoirs d'une importante diversité biologique, et donc potentiellement abritant un nombre significatif d'espèces produisant des sons. Cependant la diversité acoustique de ces milieux naturels n'a jamais été explorée.L'objectif principal de cette thèse est d'explorer pour la première fois la diversité acoustique présente dans les milieux d'eau douce en climat tempéré en étudiant les structures des populations et communautés acoustiques et en explorant les processus pouvant déterminer ces structures.Une revue bibliographique sur la production sonore par les organismes d'eau douce ainsi que des enregistrements d'espèces cibles effectués en laboratoire révèlent qu'une diversité acoustique particulière existe dans les environnements d'eau douce en milieux tempérés. Pour comprendre comment cette diversité est structurée, les communautés acoustiques de trois mares situées dans des environnements différents ont été enregistrées et suivies au cours du temps. Cette étude révèle que les trois mares sont caractérisées par des communautés acoustiques riches et distinctes ayant des dynamiques spatio-temporelles spécifiques. Les facteurs potentiels structurant les communautés acoustiques d’eau douce ont été recherchés en testant si la composition de communautés acoustiques dans six bras morts de la plaine d'inondation du Rhône était liée à des variables environnementales. Nos résultats montrent que les communautés acoustiques des bras morts sont significativement liées à une variable environnementale : le degré de connectivité entre les bras morts et le lit principal de la rivière. Ce résultat suggère un rôle clé de cette variable dans les règles d'assemblage des communautés. Enfin, pour comprendre les processus possibles liant la production de sons et l'environnement naturel, une population de l'insecte aquatique Micronecta scholtzi a été suivie par des enregistrements acoustiques dans une mare méditerranéenne. Le niveau d'activité acoustique de M. scholtzi a été estimé de façon continue à l'aide d'un réseau de 12 capteurs sonores synchronisés. L'activité acoustique était caractérisée par un rythme circadien, dont les propriétés étaient perturbées par la diffusion expérimentale d'un bruit d'origine anthropique. Cette expérience révèle que les effets de la pollution sonore peuvent être observés à l'échelle d'une population d'insectes aquatiques.Ce travail montre ainsi l'existence d'une diversité acoustique dans les milieux d'eau douce et identifie des relations entre production acoustique et facteurs environnementaux. Ce travail ouvre également des perspectives intéressantes d'utilisation de l'acoustique pour aborder des problématiques d'écologie fondamentale et appliquée en milieu d'eau douce. / An important diversity of animal species produces sounds during communication, orientation, movement, or prey-predator acts. These sounds are not distributed randomly in space and time and are therefore thought to follow assembly rules forming either acoustic populations or acoustic communities. Freshwater environments and ponds in particular, are considered as primary resources for biological diversity and as such host a potentially significant number of soniferous species. However the acoustic diversity of these natural environments remains totally unexplored.The main aim of this PhD was to explore for the first time the acoustic diversity found in temperate freshwater by studying the patterns and structural processes of a selection of acoustic populations and communities recorded in several types of freshwater environments. A review of the literature on sound production by freshwater organisms along with laboratory recordings of target species revealed that a valuable acoustic diversity can be found in temperate freshwater environments. To understand how the acoustic diversity is structured, the acoustic communities of three temperate ponds were acoustically monitored. This study revealed that the three ponds were characterized by rich and distinct acoustic communities with specific spatio-temporal dynamics. To further understand the potential factors structuring freshwater acoustic communities, environmental variables were assessed along with the composition of acoustic communities found in six secondary channels of the Rhône riverine floodplain. Two environmental variables were investigated: the water temperature and the level of lateral connectivity of the secondary channels to the main river. Acoustic communities in the Rhône riverine floodplain were clearly structured by lateral connectivity suggesting a role of this key variable as an assembly rule. Finally to understand the possible processes linking animal acoustics and the natural environment, a population of aquatic insect, Micronecta scholtzi, was acoustically monitored in a Mediterranean pond. The level of M. scholtzi acoustic activity was assessed continuously using a network of twelve synchronised acoustic sensors. The acoustic activity of \textit{M. scholtzi} showed a regular daily pattern that was modified in amplitude and phase by the playback of an anthropogenic noise. This experiment revealed that the effects of noise pollution may emerge at an aquatic insect population level. This PhD unraveled the existence of a significant amount of unexplored acoustic diversity in freshwater environments and identified links between acoustics and the environment. This research opens interesting perspectives in the use of acoustic to tackle fundamental and applied ecological questions in freshwater environments.

Page generated in 0.0739 seconds