• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 64
  • 64
  • 64
  • 55
  • 20
  • 13
  • 10
  • 10
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Spectral methods for the estimation of acoustic intensity, energy density, and surface velocity using a multimicrophone probe.

Steyer, Glen C. January 1984 (has links)
No description available.
32

Non-Iterative Finite Impulse Response Design Techniques

Bishop, Carlton D. 01 January 1984 (has links) (PDF)
A general, non-iterative design technique for low shapefactor, transversal filters is presented. This design approach uses two cosine series to specify appropriate eigenfunctions. An infinite set of such eigenfunctions are defined and the method for choosing the coefficients is discussed. The total filter response is specified as the product of two individual frequency responses. The impulse response of each is then determined by applying the superposition of appropriate eigenfunctions. The criteria for choosing the appropriate eigenfunctions is discussed. A synthesis procedure for designing surface acoustic wave filters is presented. The effects of truncating the impulse response are also explored. A design example is shown for a filter with 10 percent fractional bandwidth and a shapefactor of 1.15.
33

Saw Draw: An Interactive Graphical Layout System for Surface Acoustic Wave Devices

Abbott, Jeffrey Blair 01 January 1988 (has links) (PDF)
This thesis introduces a solution to the problem of time and memory space requirements associated with the manipulation/creation of solid state device layout. Through the use of a hierarchical organization of data and a tailored indexing technique, the software described here, referred to as Saw Draw, is capable of manipulating huge amounts of data in a short period of time. This program was written for surface acoustic wave (SAW) device layout but works for a broad range of devices to include semiconductors, microstrip and others. Due to the large number of details which must be stored for each SAW structure, simply displaying a typical SAW device can become exceedingly tedious. When an entire mask of devices is organized, disk storage requirements can become prohibitive. This software has been designed to minimize both of these critical problems. This work describes the capabilities, structure and special algorithms used in Saw Draw. Included is an example of how a SAW device might be created and a listing of the program code in the Appendix.
34

Surface acoustic wave probes for chemical analysis

Wohltjen, Henry January 1978 (has links)
Surface Acoustic Wave delay lines have been used as probes for chemical analysis. The interaction between matter adjacent to the SAW device surface and the propagating Raleigh wave caused measurable changes in the amplitude, phase and resonant frequency of the wave. The effectiveness of various electronic detection schemes was evaluated along with the response of the device to changes in pressure and temperature. A lithium niobate SAW device was used as a detector for gas chromatography. Frequency shifts of a SAW oscillator provided the highest sensitivity to compounds eluting from the G.C. column. Sensitivity and specificity of the detector to polar and non-polar organic compounds was greatly enhanced by thin chemical coatings applied to the detector surface. Submicrogram quantities of material were easily detected. Linearity and dynamic range of the detection system was poor. Numerous refinements remain to be made which could significantly improve performance. Thermomechanical analysis of thin polymer films were accomplished using a 32 MHz quartz delay line. Very large wave amplitude shifts were observed as the polymer reached its glass transition temperature. Tg measurements were performed on samples clamped to the surface and cast on the surface. Agreement with low frequency dynamic mechanical measurements was good for the clamped specimens, indicating the absence of wave coupling. Specimens cast on the surface experienced large Tg shifts and therefore were coupled to the surface wave. More subtle transitions were also detected. A crystalline transition around room temperature in a TEFLON film clamped to the SAW device provided an easily observed shift in SAW amplitude. Explanations of this behavior have been proposed. The SAW device also provided an ideal vehicle for examining the behavior of thin photoresist films on the surface. Information on solvent evaporation processes and photo-induced crosslinking rate was obtained. The attractive features of the device for polymer thermomechanical analysis include low cost, ruggedness, high sensitivity and ease of use. / Ph. D.
35

Robust communication in a time-varying noisy environment

Wilson, John Michael January 1987 (has links)
Matched filter detectors are used to detect known signal waveforms transmitted under noisy conditions. Moving-average matched filters (MAMF's) are a class of digital filters whose performance is measured in terms of Signal to Noise Ratio (SNR). The overall performance of a MAMF is described by the SNR Improvement (SNRI) which is the ratio of Output SNR (OSNR) to Input SNR (ISNR). The OSNR and ISNR are the SNR at the output and input of the MAMF respectively. SNRI is maximized by maximizing OSNR since ISNR is fixed for a received signal and noise. The OSNR of a MAMF is a function of the noise autocorrelation sequence and the transmitted signal vector. The maximum OSNR of a MAMF is produced when the signal vector is the eigenvector associated with the smallest eigenvalue of the Toeplitz matrix formed from the noise autocorrelation sequence. If the noise autocorrelation is not known in advance of transmission, or not stationary, then it must be estimated at the receiver. Since autocorrelation estimators derive their estimates from noise samples, i.e. a random process, the estimates are probabilistic. In a practical implementation wherein the signal vector is fixed, the noise is stationary over short periods of time, and the noise autocorrelation sequence is estimated, the SNRI or performance of the MAMF varies and can even become less than unity if either the estimates are poor or the noise characteristics differ from those expected when the signal vectors were selected. A SNRI less than unity is highly undesirable as processing, which is done with the objective of obtaining higher OSNR than ISNR, i.e. a SNRI greater than unity, has become counterproductive. This thesis proposes a variation to the classical MAMF communication system and investigates the performance of the resulting MAMF. In the classical MAMF communication system the N-dimensional signal vector is treated as a single vector. In the proposed MAMF communication system, the N-dimensional signal vector is composed of two or more linearly independent basis vectors spanning a signal vector subspace of dimension M. By combining the linearly independent basis vectors in the receiver, one can effectively change the transmitted signal vector to any signal vector in the signal vector subspace to maximize OSNR. The OSNR of a MAMF is a function of the autocorrelation of the noise as well as the signal vector. The autocorrelation of the noise is estimated in both the classical and proposed systems. For relatively few noise samples, the estimated autocorrelation of the noise deviates from the actual autocorrelation. The proposed system is formed from the classical system by proceeding the MAMF with a processor that extracts the received linearly independent basis vectors with additive colored Gaussian noise from the received transmission and combines them to yield maximum OSNR assuming the estimated autocorrelation of the noise is exact. Since the autocorrelation of the noise is estimated from the random noise process, the autocorrelations themselves are probabilistic and hence the maximum OSNR is too. As the estimated noise autocorrelation approaches the actual noise autocorrelation, the OSNR approaches the absolute maximum OSNR for the M-dimensional system. The theoretical aspects of both the classical and proposed MAMF communication systems are developed in this thesis. The performance of the proposed MAMF communication system is investigated for a practical implementation wherein the signal vector is composed of two linearly independent basis vectors and the noise characteristics vary over time. The performance of the proposed system is first compared to that of the classical system with both systems using various signal vectors, over various noise colors, and with the exact noise autocorrelation given. The performance comparison between the classical and proposed systems is then repeated with the noise autocorrelation, as in a practical implementation, estimated using either the classical biased or Burg estimator. The performance is measured by SNRI and the results are tabulated and graphed. Finally, the proposed system is implemented and its performance measured by bit error rates as a function of ISNR. This will show whether SNRI performance is a good prediction of bit error rate performance. The color of the stationary Gaussian noise is kept constant during transmission of a particular bit. The color of the stationary Gaussian noise is changed between bit transmissions to observe the robustness of the system under different colored noise conditions while maintaining the same signal vectors, or signal subspace. The results are again tabulated and graphed. / Master of Science
36

Fabrication of two-port resonators using different types of metal electrodes and substrates

Guha, Anirban 01 July 2002 (has links)
No description available.
37

Electrical characterization of saw filter packaging

Finch, Craig Allen 01 July 2001 (has links)
No description available.
38

Three dimensional full wave package design of RF SAW duplexer

Cheema, Kamran Safdar 01 July 2002 (has links)
No description available.
39

Coupling of modes model and analysis of one-port SAW resonators on langanite and langanate

Saldanha, Nancy 01 July 2003 (has links)
No description available.
40

A computer simulation of leaky surface acoustic wave transducers

Gamble, Kevin J. 01 July 2001 (has links)
No description available.

Page generated in 0.0821 seconds