Spelling suggestions: "subject:"acoustic surface waves."" "subject:"coustic surface waves.""
41 |
Geoacoustic inversion of subbottom channels using mulitple frequency input parametersUnknown Date (has links)
This thesis investigates inversion techniques used to determine the geoacoustic properties of a shallow-water waveguide. The data used were obtained in the Shallow Water '06 Modal Mapping Experiment in which four buoys drifted over a system of subbottom channels. The method used was perturbative inversion using modal eigenvalues as input parameters, which were found using an autoregressive spectral estimator. This work investigates the differences between a "channel" region and a "no channel" region based on an inferred stratigraphic model. Inversions were performed on data from a single buoy both at individual frequencies and multiple frequencies simultaneously. Since the use of multiple frequencies and a certain set of constraints proved to be an effective method of inversion, the method was applied to data from the other three buoys as well. It is shown that the "channel" and "no channel" regions have significantly different sound speed profiles. / by Rebecca Weeks. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
42 |
Boundary reflection coefficient estimation from depth dependence of the acoustic Green's functionUnknown Date (has links)
Sound propagation in a waveguide is greatly dependent on the acoustic properties of the boundaries. The effect of these properties can be described by a bottom reflection coefficient RB, and surface reflection coefficient RS. Two methods for estimating reflection coefficients are used in this research. The first, the ratio method, is based on the variations of the Green's function with depth utilizing the ratio of the wavenumber spectra at two depths. The second, the pole method, is based on the wavenumbers of the modal peaks in the spectrum at a particular depth. A method to invert for sound speed and density is also examined. Estimates of RB and RS based on synthetic data by the ratio method were very close to their predicted values, especially for higher frequencies and longer apertures. The pole method returned less precise estimates though with longer apertures, the estimates were better. Using experimental data, results of the pole method as well a geoacoustic inversion technique based on them were mixed. The ratio method was used to estimate RS based on the actual data and returned results close to the predicted phase of p. / by Alexander Conrad. / Vita. / Thesis (M.S.C.S.)--Florida Atlantic University, 2010. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2010. Mode of access: World Wide Web.
|
43 |
Homogenization of Acoustic Wave Propagation in a Magnetorheological FluidReese, Owein 30 April 2004 (has links)
We formulate a model for acoustic excitations in a magnetorheological fluid. Constitutive equations are derived for Navier-Stokes flow coupled with Maxwell's Equations. The viscosity of the fluid is modified to reflect the dependence of waves propagating within the fluid itself and in the case where they propagate along the network of particles.
|
44 |
Steady-state nonlinear interactions of surface acoustic waves.Vlannes, Nickolas Peppino January 1977 (has links)
Thesis. 1977. Elec.E.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / Elec.E.
|
45 |
Characterization of fatigue damage in A36 steel specimens using nonlinear Rayleigh surface wavesWalker, Simon Valentin 24 August 2011 (has links)
A36 steel is a commonly used material in civil engineering structures where fatigue damage can lead to catastrophic failure. In this research, nonlinear Rayleigh surface waves are used to characterize damage in A36 steel specimens caused by monotonic tension and low cycle fatigue. Fatigue damage produces the increased acoustic nonlinearity that leads to the generation of measurable higher harmonics in an initially monochromatic Rayleigh wave signal. One specimen is subjected to static tension and four specimens are used for low cycle fatigue tests in the tension-tension mode with a constant stress amplitude. The fatigue tests are interrupted at
different numbers of cycles for the nonlinear ultrasonic measurements. Tone burst Rayleigh wave signals are generated and detected using a pair of oil coupled wedge transducers. The amplitudes of the first and second harmonic are measured at varying propagation distances to obtain the nonlinearity parameter for a given damage state.
The experimental results show an increase of acoustic nonlinearity in the early stages of fatigue life. Furthermore, a close relationship between plastic deformation and the acoustic nonlinearity is found, which indicates that the acoustic nonlinearity is indeed a measure of microplasticity in this material.
|
46 |
Determination of in situ V[subscript s] and G[subscript max] using surface wave measurements in cased and uncased boreholes /Kalinski, Michael E. January 1998 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 1998. / Vita. Includes bibliographical references (leaves 401-406). Available also in a digital version from Dissertation Abstracts.
|
47 |
Circuit quantum acoustodynamics with surface acoustic wavesManenti, Riccardo January 2017 (has links)
A highly successful architecture for the exchange of single quanta between coupled quantum systems is circuit quantum electrodynamics (QED), in which the electrical interaction between a qubit and a high-quality microwave resonator offers the possibility to reliably control, store, and read out quantum bits of information on a chip. This architecture has also been implemented with mechanical resonators, showing that a vibrational mode can in principle be manipulated via a coupled qubit. The work presented in this thesis consists of realising an acoustic version of circuit QED that we call circuit quantum acoustodynamics (QAD), in which a superconducting qubit is piezoelectrically coupled to an acoustic cavity based on surface acoustic waves (SAWs). Designing and building this novel platform involved the following main accomplishments: a systematic characterisation of SAW resonators at low temperatures; successfully developing a recipe for the fabrication of Josephson junction on quartz and diamond; measuring the coherence time of superconducting 3D transmon qubits on these substrates and demonstrating the dispersive coupling between a SAW cavity and a qubit on a planar geometry. This thesis presents evidence of the coherent interaction between a SAW cavity and a superconducting qubit in several ways. First of all, a frequency shift of the mechanical mode as a function of qubit frequency is observed. We also measure the acoustic Stark shift of the qubit due to the population of the SAW cavity. The extracted coupling is in agreement with theoretical expectations. A time delayed acoustic Stark shift serves to further demonstrate that the Stark shifts that we observe are indeed due to the acoustic field of the SAW mode. The dispersive coupling between these two quantum systems offers the possibility to perform qubit spectroscopy using the SAW resonator as readout component, indicating that these acoustic resonators can, in principle, be adopted as an alternative qubit readout scheme in quantum information processors. We finally present preliminary measurements of the direct coupling between a SAW resonator and a transmon on diamond, suggesting that strong coupling can in principle be obtained.
|
48 |
Advances in Linear Periodically Time Variant Circuits: From High Performance Filters to Magnetic-Free Inductorless Nonreciprocal ComponentsKhorshidian, Mohammad January 2022 (has links)
Commutated N-path networks have seen a resurgence in the past decade in the context of modern integrated circuits. N-path circuits have been used to implement high-quality tunable band-pass and notch filters with just switches and capacitors. Recently, nonreciprocal circuits such as circulators and isolators have also been reported as other applications of Linear Periodically-Time-Varying (LPTV) networks.
In this dissertation, high performance filters and inductorless nonreciprocal components based on novel LPTV networks are introduced. We proposed a concept called Negative Transresistance (NTR) in phase-shifted N-path structures. The rejection of the conventional N-path notch filters is limited to the number of paths used; however, by using our proposed NTR concept, we were able to achieve more than 50dB rejection regardless of the number of paths. Using the same concept, we introduced the first prototype of N-path Low-Pass Filter (LPF). The resulting components can find application in blocker-tolerant systems, to select closely-spaced frequency channels, and also in the analog Baseband (BB).
Nonreciprocal components such as circulators and isolators have traditionally relied on ferrites that offer nonreciprocal behavior based on Faraday Effect (by applying an external magnetic field). Recent efforts to eliminate the need for magnetic materials, despite being a huge success involve the usage of transmission lines (and/or inductors). In this dissertation, a novel concept called Nonreciprocal Transresistance (NRTR) is introduced. This led to the first ever inductorless RF isolator. Furthermore, we expanded the idea to the first inductorless circulator consisting of only switches and capacitors. The resulting isolator can find application in base stations to prevent back reflections (e.g. to protect the Power Amplifier (PA)). Also, in superconducting quantum systems, an isolator is necessary to separate the noise and reflections at the interface of different blocks. The introduced circulator can find applications in wireless communication systems as an antenna interface connecting the Transmitter (TX) and the Receiver (RX) to a shared antenna. This is crucial, especially for Full-Duplex (FD) applications where high isolation between RX and TX is necessary as they are operating at the same frequency.
Finally, we enhanced the performance of the conventional N-path Band-Pass Filter (BPF). We first introduced a second-order N-path BPF with passive gain called impedance-transforming N-path filter. We then proposed a concept called rotary-clock-path in N-path filters which enables passive frequency shifting of N-path filters of any kind without the need for a separate clock frequency or active circuitries. Then by combining the impedance-transforming BPF and rotary-clock-path ideas, we implemented the first ever inductorless passive higher-order N-path BPF with voltage gain. The resulting BPFs can find applications in matching networks and also in a Surface Acoustic Wave (SAW)-less mixer-first receivers.
|
49 |
Optical fiber detection of ultrasonic vibration and acoustic emissionNau, Gregory Merrill 29 September 2009 (has links)
Several techniques for measuring high frequency vibrations are presented. The goal of the study is to develop a sensor for detecting acoustic emissions (AE) inside composite structures. The basics of wave propagation inside of materials has been presented along with an overview of typical acoustic emission testing. Surface acoustic waves (SAWs) were studied first and a novel, noncontact optical interferometric technique for measuring absolute amplitudes is presented. This technique has the added advantages in that it does not require that the interferometer be stabilized or phase biased. It is insensitive to laser fluctuations, random phase drifts, polarization changes and changes in mixing efficiency of the interferometer. SAW amplitudes between 7 and 2.5 angstroms were measured with the described technique. An intrinsic Fabry-Perot type interferometer was demonstrated for detecting SAW's and was then embedded into carbon fiber composite panels which were then put through tensile tests. AE's were captured, centered around 300 KHz, as is expected of a composite. These tests were repeatable and indicate that qualitative measurements of AE can be made. This sensor configuration was also used for detecting a variety of taps on the composite panel as well as pencil lead breaks, a standard calibration procedure for AE testing. / Master of Science
|
50 |
Acoustic Tonal and Vector Properties of Red Hind Grouper VocalizationdUnknown Date (has links)
Vertebrates are the most prodigious vocalizing animals in existence, and the most
diverse methods of acoustic communication among vertebrates can be found in the ocean.
Relatively many teleost fish are gifted with the ability to communicate acoustically, and
the family of serranidae often performs this as a function of the swim bladder.
Epinephelus Guttatus (E. guttatus), or more commonly the red hind grouper, is equipped
with a drum shaped swim bladder acting as a monopole under typical ocean conditions.
This configuration allows for what is understood to be omnidirectional projection of
tones approximately centered between 40 and 440 Hz and spanning anywhere from 40 to
200 Hz of bandwidth and modulation effects based on observed data provided by
researchers. Prior studies on many other fish show correlation in acoustic communication
profile with length, size and sexual identity. In the red hind, sexual dimorphism leads to
an inherent female identity in all juvenile fish which converts to male according to
environmental factors, recommending at least consistent organs across both sexes be assumed even if not in use. Much research has been performed on male fish vocalization
in terms of spectral content. Communication in fish is a complex multi-modal process,
with acoustic communication being important for many of the species, particularly those
in the littoral regions of the worlds’ oceans. If identifying characteristics of the red hind
vocalization can be isolated based on detection, classification, tracking and localizing
methodologies, then these identifying characteristics may indeed lead to passive feature
identification that allows for estimation of individual fish mass. Hypotheses based on
vector, cyclostationary and classical tonal mechanics are presented for consideration. A
battery of test data collection events, applying pre-recorded fish vocalizations to a geolocated
undersea sound source were conducted. The results are supplied with the intent of
validating hypothesis in a non-expert system manner that shows how a series of
biological metrics may be assessed for detection, classification, localization and mass
estimation for an individual vocalizing red hind grouper / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
Page generated in 0.0722 seconds