• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 20
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 1
  • Tagged with
  • 142
  • 142
  • 38
  • 34
  • 33
  • 32
  • 21
  • 15
  • 14
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The effects of hearing protection on speech discrimination in differing noise spectra

Horylev, Matthew James 17 November 2012 (has links)
This research project was aimed at investigation of speech communication issues in industrial noise environments where workers utilize hearing protection devices (HPDs). A controlled empirical study was conducted to determine the effects of several independent variables on speech reception and discrimination including: l). subject's hearing configuration (unoccluded or earplug, earcap, earmuff-occluded), 2). ambient noise intensity level (60, 83 dBA), 3). ambient noise spectral type (low, white approximation, high frequency), 4). speaker's voice level (63 or 65 dBA in 60 dBA noise, 82 or 88 dBA in 83 dBA noise), and 5). subject's hearing level (normal hearing, slight loss, or moderate loss) used as a blocking variable. Isophonemic word discrimination, with male-voiced word lists presented through loudspeakers in an anechoic field, served as the experimental task. Twenty-three males and twenty-two females participated in the experiment and a mixed-factors, partial hierarchical design was used for data collection. Analysis of variance and Newman-Keuls multiple-range tests were applied to the data. All main effects, with the exception of hearing level blocks, were significant, in addition to several interactions. These are discussed in detail and depicted graphically. One fundamental finding was that none of the hearing protection devices degraded speech discrimination (in comparison to an unoccluded condition) in the 83 dBA ambient noise level. In fact, the most protective HPD significantly enhanced speech discrimination in the high noise level. In the low ambient noise level, there was some reduction in discrimination due to the wearing of an HPD, but this effect is not of concern because HPDs are not needed at low ambient levels for protection purposes. From the results, it appears that properly selected HPDs can be expected to at least maintain speech discrimination levels (equivalent to unoccluded levels) in moderately-high intensity industrial noises of varied spectral characteristics. / Master of Science
82

Experimental investigation of normal, sonic injection through a wedge-shaped nozzle into supersonic flow

Barber, Matthew James 22 August 2009 (has links)
An experimental evaluation of normal, sonic, helium injection from a wedgeshaped nozzle and a circular nozzle into a Mach 3 free stream with a total pressure of 6.5 atm and a total temperature of 294 K was conducted. The expansion ratio and the mass rate of flow of both nozzles were matched in order to determine the effect of the geometric difference only. 'Decay rate, penetration, and jet area growth rate were used to compare the mixing performance of the nozzles. Oil flow photography was used to determine the size of the three-dimensional boundary layer separation zone in front of each nozzle, and nanoshadowgraph photography was used to visualize the system of shocks and the flow field of each nozzle. Mean flow quantity profiles at several lateral stations were made at three downstream locations. The profiles were used to calculate helium concentration, Mach number, static temperature, static pressure, density, flow velocity, local speed of sound, mass flux, and total pressure. The two nozzles were then compared on the basis of maximum helium concentration decay, core center and overall penetration, and the growth rate and centroid penetration of a defined jet area. Although the decay rate of the jet from the circular nozzle was slightly higher than the decay rate of the jet from the wedge-shaped nozzle, the mixing performance of the wedge-shaped nozzle exceeded that of the circular nozzle in all other comparison parameters. The jet from the wedge-shaped nozzle penetrated further and its area grew more rapidly than the same parameters for the jet from the circular nozzle. The oil flow photography showed that the wedge-shaped nozzle also had no separation zone in front of it, whereas the circular nozzle had a large separation zone. A separation zone in front of a fuel injector in a scramjet engine can result in damage to the combustor from the extreme heat fluxes to the wall. Also, the total pressure loss in the combustor should be lower for fuel injection through a wedge-shaped nozzle due to the elimination of the normal shock. It was concluded that wedge-shaped fuel injectors should perform better than circular fuel injectors in supersonic combustors. / Master of Science
83

Active control of broadband acoustic radiation from structures

Smith, Jerome P. 24 January 2009 (has links)
Active Structural Acoustic Control (ASAC) has been previously demonstrated for systems excited by single and multiple frequency disturbances. This work is an extension of ASAC techniques to the control of sound radiation from structures excited by a disturbance with broadband frequency content. An adaptive, multi-input multi-output (MIMO), feedforward broadband acoustic control system has been developed. The control approach is the least mean squares (LMS) algorithm. The compensators are adaptive finite impulse response (FIR) digital filters. The system identification of the control loop transfer functions were implemented with infinite impulse response (IIR) digital filters. The control inputs were implemented with piezoelectric ceramic actuators (PZT). Both far-field microphones and polyvinylidene fluoride (PVDF) structural sensors designed to optimally control the efficient acoustic radiating modes were used as error sensors. The disturbance was band-limited zero mean white noise and was input with a point force shaker. In the control of harmonically excited systems, satisfactory attenuation is possible with a single-input single-output (SISO) controller. In contrast, for Systems excited with broadband disturbances, a MIMO controller is necessary for significant acoustic attenuation. Experimental results for the control of two simplySupported plates are presented. Aspects addressed include the evaluation of the microphone and PVDF error sensors, optimization of sensors and actuators, FIR compensator size, controller sample rate, and convergence time. Thus this work provides a methodology for controlling broadband acoustic radiation from a structure with regard to the practical aspects of ASAC. / Master of Science
84

Evaluation of active acoustic methodology in diagnosis of pleural effusion

Minai Zaiem, Hamed 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Pleural effusion is a common respiratory condition that is characterized by an abnormal collection of fluid in the lung cavity. In this study, an innovation using the transmission of sound into the respiratory system as a novel tool to detect fluid in the lung was developed. First, the method was evaluated on a phantom model of a lung. Based on the results of this test model, the appropriate technique was used in a clinical study. This method has several advantages, such as that is non-invasive, low cost, and easy for clinical review. Two techniques, including analysis of the frequency response of the model and the transient time of transmitted sound in the lung, were evaluated in the phantom models of the human lung. Two phantom models with similar geometry to the human lung, including a healthy model (without fluid in the model) and a pleural effusion model (with bulk of fluid in the model) were developed. These models have acoustical properties similar to the lung parenchyma. To obtain the frequency responses of the model, a sine sweep signal was transmitted into the model and the frequency response of the model was then calculated using the fast Fourier transform. The transient time of the transmitted sound was calculated using a cross correlation method. The results show that the locations of fluid in the model were detectable using both techniques. However, the transient time technique is better than the frequency response technique because it is simple, fast, and has potential for use in a clinical enviorment. Based on the results obtained from the phantoms, the transient time method was performed on both 22 healthy participants and four patients diagnosed with pleural effusion. To perform this technique on human subjects, a data acquisition system was developed. Two types of sound, including a complex chirp sound and a polyphonic sound, were transmitted into the respiratory systems of the participants. The time delay between a reference microphone, located on the trachea of the subject, and eight microphones attached to the chest was computed using a cross correlation method, and the effect of inhalation and lung size on the transient time of transmitted sound on the healthy subject was evaluated. The results show that using transmission of sound in the lung is a promising technique in the diagnosis of pleural effusion. / AFRIKAANSE OPSOMMING: Pleurale effusie is 'n algemene respiratoriese toestand wat gekenmerk word deur 'n abnormale versameling van vloeistof in die longholte. In hierdie studie is 'n innoverende manier ontwikkel om vloeistof in die long met behulp van die transmissie van klank te bespeur. Die metode is eers op 'n fantoommodel van 'n long geëvalueer. Op grond van die resultate van hierdie toetsmodel is die geskikte tegniek in 'n kliniese studie gebruik. Hierdie metode het verskeie voordele, soos dat dit ingreepsvry is, nie duur is nie en kliniese evaluering moontlik maak. Twee tegnieke, naamlik ontleding van die frekwensierespons van die model en die oorgangstyd van versende klank in die long, is in die fantoommodel van die menselong geëvalueer. Twee fantoommodelle met soortgelyke geometrie aan die menselong, met inbegrip van 'n gesonde model (sonder vloeistof in die model) en 'n pleurale-effusie-model (met 'n massa vloeistof in die model), is ontwikkel. Hierdie modelle het akoestiese eienskappe soortgelyk aan die longparenchiem. Om die frekwensieresponse van die model te verkry, is 'n sinuskrommesein tot in die model versend. Die frekwensierespons van die model is met behulp van die vinnige Fourier-transformasie bereken. Die oorgangstyd van die versende klank is deur 'n kruiskorrelasie-metode bereken. Die resultate toon dat die ligging van die vloeistof in die model met albei tegnieke bespeur kan word. Die oorgangstyd-tegniek is egter beter as die frekwensierespons-tegniek, aangesien dit eenvoudig en vinnig is en maklik in 'n kliniese omgewing gebruik kan word. Op grond van die resultate wat van die fantome verkry is, is die oorgangstyd-metode op 22 gesonde deelnemers en vier pasiënte wat met pleurale effusie gediagnoseer is, uitgevoer. 'n Dataverkrygingstelsel is ontwikkel ten einde hierdie tegniek op proefpersone uit te voer. Twee soorte klank, naamlik 'n komplekse tjirpgeluid en 'n polifoniese klank, is na die respiratoriese stelsels van die deelnemers versend. Die tydvertraging tussen 'n verwysingsmikrofoon in die tragea van die proefpersoon en agt mikrofone wat aan die bors vasgeheg is, is met 'n kruiskorrelasie-metode bereken, en die uitwerking van inaseming en longgrootte op die oorgangstyd van versende klank op die gesonde proefpersone is geëvalueer. Die resultate toon dat die gebruik van transmissie van klank in die long 'n belowende tegniek vir die diagnose van pleurale effusie is.
85

Evaluating the applications of spatial audio in telephony

Blum, Konrad 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Telephony has developed substantially over the years, but the fundamental auditory model of mixing all the audio from di erent sources together into a single monaural stream has not changed since the telephone was rst invented. Monaural audio is very di cult to follow in a multiple-source situation such as a conference call. Sound originating from a speci c point in space will travel along a slightly di erent path to each ear. Although we are not consciously aware of it, our brain processes these spatial cues to help us to locate sounds in space. It is this spatial information that allows us to focus our attention and listen to a single speaker in an environment where many di erent sources may be active at the same time; a phenomenon known as the \cocktail party e ect". It is possible to reproduce these spatial cues in a sound recording, using Head-Related Transfer Functions (HRTFs) to allow a listener to experience localised audio, even when sound is reproduced through a headset. In this thesis, spatial audio is implemented in a telephony application as well as in a virtual world. Experiments were conducted which demonstrated that spatial audio increases the intelligibility of speech in a multiple-source environment and aids active speaker identi cation. Resource usage measurements show that these bene ts are, however, not without a cost. In conclusion, spatial audio was shown to be an improvement over the monaural audio model traditionally implemented in telephony. / AFRIKAANSE OPSOMMING: Telefonie het ansienlik ontwikkel oor die jare, maar die basiese ouditiewe model waarin die klank van alle verskillende bronne bymekaar gemeng word na een enkelouditoriese stroom het nie verander sedert die eerste telefoon gebou is nie. Enkelouditoriese klank is baie moeilik om te volg in 'n meervoudigebron situasie, soos byvoorbeeld in 'n konferensie oproep. Klank met oorsprong by 'n sekere punt in die ruimte sal 'n e ens anderse pad na elke oor volg. Selfs is ons nie aktief bewus hiervan nie, verwerk ons brein hierdie ruimtelike aanduidinge om ons te help om klanke in die ruimte te vind. Dit is hierdie ruimtelike inligting wat ons toelaat om ons aandag te vestig en te luister na 'n enkele spreker in 'n omgewing waar baie verskillende bronne terselfdertyd aktief mag wees, 'n verskynsel wat bekend staan as die \skemerkelkiepartytjiee ek". Dit is moontlik om hierdie ruimtelike leidrade na 'n klank te reproduseer met behulp van hoofverwandeoordragfunksies (HRTFs) en om daardeur 'n luisteraar gelokaliseerde klank te laat ervaar, selfs wanneer die klank deur middel van oorfone gespeel word. In hierdie tesis word ruimtelike klank ge mplementeer in 'n telefonieprogram, sowel as in 'n virtuelew^ereld. Eksperimente is uitgevoer wat getoon het dat ruimtelike klank die verstaanbaarheid van spraak in 'n meerderebronomgewing verhoog en help met aktiewe spreker identi kasie. Hulpbrongebruiks metings toon aan dat hierdie voordele egter nie sonder 'n koste kom nie. Ter afsluiting, dit is bewys dat ruimtelike klank 'n verbetering tewees gebring het oor die enkelouditorieseklankmodel wat tradisioneel in telefonie gebruik het.
86

The acoustic far field of a turbulent boundary layer flow calculated from RANS simulations of the flow

Unknown Date (has links)
Boundary layers are regions where turbulence develops easily. In the case where the flow occurs on a surface showing a certain degree of roughness, turbulence eddies will interact with the roughness elements and will produce an acoustic field. This thesis aims at predicting this type of noise with the help of the Computational Fluid Dynamics (CFD) simulation of a wall jet using the Reynolds Average Navier-Stokes (RANS) equations. A frequency spectrum is reconstructed using a representation of the turbulence with uncorrelated sheets of vorticity. Both aerodynamic and acoustic results are compared to experimental measurements of the flow. The CFD simulation of the flow returns consistent results but would benefit from a refinement of the grid. The surface pressure spectrum presents a slope in the high frequencies close to the experimental spectrum. The far field noise spectrum has a 5dB difference to the experiments. / by Jean-Baptiste Blanc. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
87

Acoustic tracking of an unmanned underwater vehicle using a passive ultrashort baseline array and a single long baseline beacon

Unknown Date (has links)
This thesis discusses a new approach to tracking the REMUS 100 AUV using a modified version of the Florida Atlantic University (FAU) ultrashort baseline (USBL) acoustic positioning system (APS). The REMUS 100 is designed to utilize a long baseline (LBL) acoustic positioning system to obtain positioning data in mid-mission. If the placement of one of the transponders of the LBL field is known, then tracking the position of the REMUS 100 AUV using a passive USBL array is possible. As part of the research for this thesis, the FAU USBL system was used to find a relative range between the REMUS 100 ranger and a LBL transponder. This relative range was then combined with direction of arrival information and LBL field component position information to determine an absolute position of the REMUS 100 ranger. The outcome was the demonstration of a passive USBL based tracking system. / by Kyle L. Seaton. / Thesis (M.S.C.S.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
88

A fuzzy logic material selection methodology for renewable ocean energy applications

Unknown Date (has links)
The purpose of this thesis is to develop a renewable ocean energy material selection methodology for use in FAU's Ocean Energy Projects. A detailed and comprehensive literature review has been performed concerning all relevant material publications and forms the basis of the developed method. A database of candidate alloys has been organized and is used to perform case study material selections to validate the developed fuzzy logic approach. The ultimate goal of this thesis is to aid in the selection of materials that will ensure the successful performance of renewable ocean energy projects so that clean and renewable energy becomes a reality for all. / by Donald Anthony Welling. / Thesis (M.S.C.S.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
89

Acoustic Tracking Of Ship Wakes

Onur, Cagla 01 January 2013 (has links) (PDF)
Theories about ship wake structure, bubble dynamics, acoustic propagation through bubble clouds, backscattering and target strength of bubble clouds have been investigated and related Matlab simulations have been carried on. Research has been carried on algorithms for ship wake acoustic detection and tracking. Particle filter method has been simulated with Matlab for target tracking using wake echo measurements. Simulation results are promising.
90

Design and Testing of a Thermoacoustic Power Converter

Telesz, Mark P. 22 May 2006 (has links)
Thermoacoustic engines convert heat into acoustic pressure waves with no moving parts; this inherently results in high reliability, low maintenance and low manufacturing costs. Significant increases in the performance of these devices have enabled rivalry with more mature energy conversion methods in both efficiency and power output. This optimal production of acoustic power can be ultimately used to achieve cryogenic temperatures in thermoacoustic refrigerators, or can be interfaced with reciprocating electro-acoustic power transducers to generate electricity. This thesis describes the design, fabrication and testing of a Thermoacoustic Power Converter. The system interfaces a thermoacoustic-Stirling heat engine with a pair of linear alternators to produce 100 watts of electricity from a heat input. It operates with helium at 450 psig internal pressure and a hot side temperature of 1200F. Through thermoacoustic phenomena, these conditions sustain a powerful pressure wave at a system specific 100 Hz. This pressure wave is used to drive the two opposed linear alternators in equal and opposite directions to produce a single phase AC electrical output at that same system frequency. The opposing motion of the two alternators enables a vibration-balanced system. The engine has created 110 watts of acoustic power and the complete Thermoacoustic Power Converter system has produced 70 watts of AC electricity. Compensating for some heat leaks, the converter reaches 26.3% heat to acoustic power efficiency and 16.8% heat to electric efficiency when those maximum values are achieved. This conversion of heat to acoustic power is 40% of the Carnot thermodynamic efficiency limit.

Page generated in 0.1323 seconds