• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 126
  • 29
  • 17
  • 10
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • Tagged with
  • 442
  • 442
  • 153
  • 140
  • 125
  • 112
  • 104
  • 68
  • 66
  • 64
  • 64
  • 63
  • 59
  • 58
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Microbial enhancement of phosphorus removal in sludge sewage systems

Russ, Charles Francis, 1943- January 1975 (has links)
No description available.
52

Removal of Organic Micropollutants by Aerobic Activated Sludge

Wang, Nan 06 1900 (has links)
The study examined the removal mechanism of non-acclimated and acclimated aerobic activated sludge for 29 target organic micropollutants (OMPs) at low concentration. The selection of the target OMPs represents a wide range of physical-chemical properties such as hydrophobicity, charge state as well as a diverse range of classes, including pharmaceuticals, personal care products and household chemicals. The removal mechanisms of OMPs include adsorption, biodegradation, hydrolysis, and vaporization. Adsorption and biodegradation were found to be the main routes for OMPs removal for all target OMPs. Target OMPs responded to the two dominant removal routes in different ways: (1) complete adsorption, (2) strong biodegradation and weak adsorption, (3) medium biodegradation and adsorption, and (4) weak sorption and weak biodegradatio. Kinetic study showed that adsorption of atenolol, mathylparaben and propylparaben well followed first-order model (R2: 0.939 to 0.999) with the rate constants ranging from 0.519-7.092 h-1. For biodegradation kinetics, it was found that benzafibrate, bisphenol A, diclofenac, gemfibrozil, ibuprofen, caffeine and DEET followed zero-order model (K0:1.15E-4 to 0.0142 μg/Lh-1, R2: 0.991 to 0.999), while TCEP, naproxen, dipehydramine, oxybenzone and sulfamethoxazole followed first-order model (K1:1.96E-4 to 0.101 h-1, R2: 0.912 to 0.996). 4 Inhibition by sodium azide (NaN3)and high temperature sterilization was compared, and it was found that high temperature sterilization will damage cells and change the sludge charge state. For the OMPs adaptation removal study, it was found that some of OMPs effluent concentration decreased, which may be due to the slow adaptation of the sludge or the increase of certain bacteria culture; some increased due to chromic toxicity of the chemicals; most of the OMPs had stable effluent concentration trend, it was explained that some of the OMPs were too difficutl to remove while other showed strong quick adaptation. A new module combined of sequencing batch reactor (SBR) and nanofiltration membrane filtration (NF-MBR) was developed to further study the OMPs removal and to exam the concept of compounds (CRT). The NF-MBR was proved to be a promising bioreactor, as OMPs were rejected by NF membrane which leaded to a low OMPs concentration in permeate water, the apparent removal rate was over 80% for most of the OMPs.
53

Sequential substrate removal in activated sludge systems

Bohac, Charles E. January 1971 (has links)
No description available.
54

Optimal operation of a package waste treatment plant

Zoha, Shamsuz, 1935- January 1972 (has links)
No description available.
55

Characterization of anaerobic membrane digesters for stabilization of waste activated sludge

Dagnew, Martha January 2010 (has links)
Anaerobic membrane bioreactors may provide a sustainable technological solution for digestion of waste activated sludge due to their capacity to achieve substantial volatile solids (VS) destruction and positive energy balances with reduced digester volumes. However, membrane integrated anaerobic systems may have limitations that are imposed by membrane fouling and a decrease in biomass activity due to possible exposure of biomass to high shear conditions. This study characterised bioprocess and membrane performance under varying conditions, identified foulant type and origin and mechanism of fouling, and developed fouling control strategies by using low cross flow velocity and pressure anaerobic membrane systems. The study employed a pilot scale anaerobic digester integrated with negative and neutral tubular membranes; pilot and bench scale control digesters supported with bench scale filtration unit parametric studies. The membranes were polyvinylidene difluoride based with an average pore size of 0.02 micron and were operated at a constant cross flow velocity of 1 ms-1 and constant trans-membrane pressure of 30 kPa. Four operating conditions consisting of different combinations of HRT and SRT were evaluated. By integrating membranes into the digesters it was possible to simultaneously enhance digestion and increase throughput of the digesters without affecting its performance. The anaerobic membrane digester showed 48-49% volatile solids destruction at 30 days SRT under conventional and higher loadings of 1.2±0.4 and 2.1±0.6 kg COD m-3day-1. This was a 100% increase in performance compared to a control digester subjected to higher loading. This result was supported by the associated specific methane generation. The control digesters operated at a relatively higher SRT showed comparable VS destruction and gas generation to the anaerobic membrane running at a similar SRT. However the extra gas generated didn’t compensate heat required to maintain larger volume of the digester. In case of anaerobic membrane digesters due to the high rate feeding, increase biogas production and co-thickening, the energy balance increased by 144 and 200% under conventional and higher loading conditions respectively. Characterization of membrane performance showed that the average sustainable flux was 23.2±0.4 and 14.8±0.4 LMH during HRT-SRTs of 15-30 and 7-15 days respectively. The critical fluxes were in the range of 30-40, 16-17 and 20-22 LM-2H-1 during HRT-SRTs of 15-30, 7-30 and 7-15 days respectively. The decline in membrane performance at a higher loading was associated with the formation of cake layers on the membrane surface that led to reversible fouling. The additional decline in performance at extended SRT was attributed to irreversible fouling. The colloidal fraction of the sludge showed an overall higher fouling propensity during the long term pilot studies and short term filtration tests. The suspended solids fraction of the sludge showed a positive impact at concentration below 15 g/L but resulted in a decrease of membrane performance at higher concentrations. Further studies of foulant origin through a series of microscopic, membrane cleaning and sludge characterization studies showed that the colloidal proteins, soluble carbohydrates and inorganic materials such as iron, calcium and sulfur and their interaction to have a significant impact on membrane fouling. To control anaerobic membrane fouling by the digested sludge, integration of membrane relaxation techniques in the filtration cycle were found effective. By incorporating a unique relaxation technique to tubular membranes, it was possible to increase the sustainable flux to 29.2±1.8 and 34.5±2.5 LM-2H-1 for neutral and negative membranes during 15-30 HRT-SRT process condition. Addition of cationic polymers and sequential mechanical-citric acid membrane cleaning, that targeted both reversible and irreversible fouling was also found effective.
56

Understanding Defloccation of Activated Sludge Under Transients of Short-term Low Dissolved Oxygen

Zhang, Yi 01 August 2008 (has links)
Deflocculation is a common upset event in biological wastewater treatment plants and causes significant problems in biosolids discharge and environmental management. However, fundamental understanding of deflocculation is limited. The overall objective of this work was to explore the fundamentals for deflocculation under transients of short-term low dissolved oxygen (DO). The investigation was carried out in a sequence of batch and continuous experiments on activated sludge, followed by batch experiments on E. coli suspensions. Both batch and continuous experiments on activated sludge demonstrated deflocculation of bioflocs under the transients of low DO (< 0.5 mg/L). Under the short-term low DO (in hours), turbidity increased by 20 times in the batch system and by 1-2 times in the continuous system, concentrations of suspended solids increased by 1-2 times, number of small particles (< 12.5 mm) increased by 2 times, more soluble EPS (proteins and humic substances) were released into supernatant or treated effluents, the removal efficiency of organic compounds was reduced by 50-70%. A 40% of increase in bulk K+ but a 30% of decrease in bulk Ca2+ under the DO limitation were observed in the batch experiments. There were significant increases in bulk K+ and decreases in bulk Ca2+ in the continuous experiments. Reversible changes were observed within 24 hours once the DO stress was removed. Floc strength of the remaining bioflocs after deflocculation increased. Deflocculation under the short-term low DO was consistent with an erosion process. The addition of selected chemicals (i.e., Ca2+, tetraethylammonium chloride, glibenclamide, and valinomycin) did not prevent deflocculation under the short-term low DO. It is proposed that a DO stress causes an efflux of cellular K+ but an influx of extracellular Ca2+, resulting in a decreasing ratio of Ca2+/K+ in extracellular solution and thereby causing deflocculation. The E. coli tests supported that increasing bulk K+ under the DO limit was due to the release of cellular K+ and was a stress response to the DO limitation.
57

Understanding Defloccation of Activated Sludge Under Transients of Short-term Low Dissolved Oxygen

Zhang, Yi 01 August 2008 (has links)
Deflocculation is a common upset event in biological wastewater treatment plants and causes significant problems in biosolids discharge and environmental management. However, fundamental understanding of deflocculation is limited. The overall objective of this work was to explore the fundamentals for deflocculation under transients of short-term low dissolved oxygen (DO). The investigation was carried out in a sequence of batch and continuous experiments on activated sludge, followed by batch experiments on E. coli suspensions. Both batch and continuous experiments on activated sludge demonstrated deflocculation of bioflocs under the transients of low DO (< 0.5 mg/L). Under the short-term low DO (in hours), turbidity increased by 20 times in the batch system and by 1-2 times in the continuous system, concentrations of suspended solids increased by 1-2 times, number of small particles (< 12.5 mm) increased by 2 times, more soluble EPS (proteins and humic substances) were released into supernatant or treated effluents, the removal efficiency of organic compounds was reduced by 50-70%. A 40% of increase in bulk K+ but a 30% of decrease in bulk Ca2+ under the DO limitation were observed in the batch experiments. There were significant increases in bulk K+ and decreases in bulk Ca2+ in the continuous experiments. Reversible changes were observed within 24 hours once the DO stress was removed. Floc strength of the remaining bioflocs after deflocculation increased. Deflocculation under the short-term low DO was consistent with an erosion process. The addition of selected chemicals (i.e., Ca2+, tetraethylammonium chloride, glibenclamide, and valinomycin) did not prevent deflocculation under the short-term low DO. It is proposed that a DO stress causes an efflux of cellular K+ but an influx of extracellular Ca2+, resulting in a decreasing ratio of Ca2+/K+ in extracellular solution and thereby causing deflocculation. The E. coli tests supported that increasing bulk K+ under the DO limit was due to the release of cellular K+ and was a stress response to the DO limitation.
58

The effect of clay addition on the settling ability of activated sludge as a proposed method to control filamentous bulking

Wells, Miriam January 2014 (has links)
Filamentous bulking is a problem that has long plagued activated sludge (AS) wastewater treatment plants (WWTPs). Much research has looked at its prevention and control but there is still no solution. The sludge microbiological community is very complex and there are many factors that can affect bulking. Clay addition in scaled-down activated sludge systems was investigated at concentrations of 0.4, 2.0 and 5.0 g/L along with sequencing batch reactor (SBR) parameters when run with a synthetic wastewater (SWW). The 5.0g/L concentration exhibited positive results on settling in the form of modified SVI but appeared to cause no reduction in filament length. These preliminary investigations indicate that clay may help improve sludge settling but make no difference in the abundance of filamentous microorganisms. The SBRs exhibited trends in regards to running systems with a synthetic wastewater. A loss of volatile suspended solids (VSS), coupled with increase in sludge volume index (SVI), suggested a link between lack of non-VSS and settling ability. This has implications in the importance of non-VSS such as grit or clay in research performed using SWWs.
59

Fate Modeling of Xenobiotic Organic Compounds (XOCs) in Wastewater Treatment Plants

Ghalajkhani, Rosita 04 November 2013 (has links)
Xenobiotic Organic Compounds (XOCs) are present in wastewater and wastewater-impacted environmental systems. Pharmaceuticals and personal care products are a broad and varied category of chemicals that are included among these compounds. Although, these compounds have been detected at low levels in surface water, concerns that these compounds may have an impact on human health and aquatic life, have led to increased interest in how XOCs are removed during wastewater treatment. Recognizing specific mechanisms in recent literature and simulating those mechanisms responsible for the removal of XOCs is the main objective of this study. Conventional models, such as the popular activated sludge models (ASM1, ASM2, etc), do not sufficiently address the removal processes; therefore, a fate model is created to provide a means of predicting and simulating removal mechanisms along with experimental analyses. GPS-X is a multi-purpose modeling tool for the simulation of municipal and industrial wastewater treatment plants. This software package includes conventional models as built-in libraries, which can be used as bases on which new models can be created. In this thesis, the removal mechanisms of XOCs are recognized and investigated; a new library for GPS-X is also created to include XOCs. As a first step the uncalibrated fate model, which includes all mechanisms of interest with their process rates and state variables, is developed using in GPS-X software. A modified ASM1 (Mantis model) is used as a basis for developing the fate model. Since only a group of mechanisms is responsible for the removal of each compound the mechanisms are categorized in three different case studies as the next step. Thus, one submodel is associated with each case study. The model developer toolbar in GPS-X software is used to develop the model for these case studies. The first case study involves the removal of antibiotics, such as Sulfamethoxazole. The removal mechanisms used in this case are biodegradation, sorption, and parent compound formation, with co-metabolism and competitive inhibition effects being inserted into the structure of the model. Secondly, the removal of nonylphenol ethoxylates (NPEOs) occurs through abiotic oxidative cleavage, hydrolysis, and biodegradation. The third case study includes removal mechanisms of biodegradation and sorption for neutral and ionized compounds. In the calibration process, model parameters are tuned such that the model can best simulate the experimental data using optimization methods. A common error criterion is Sum of Squared Errors (SSE) between the simulated results and the measured data. By minimizing SSE, optimal values of parameters of interest can be estimated. In each case study different data sets were used for the validation process. To validate the calibrated model, simulated results are compared against experimental data in each case study. The experimental data set used in the validation process is different from that used for calibrating the model, which means the validation process data set was obtained from the different literature. By looking at the validation results, it is concluded that the proposed model successfully simulates removal of XOCs. Since the operating parameters of wastewater treatment plants, such as Solids Retention Time (SRT) and Hydraulic Retention Time (HRT) are crucial for the fate of XOC???s, a sensitivity analysis is carried out to investigate the effect of those parameters. Moreover, the pH effect is studied because it relates to the ionized XOCs. Sensitivity analysis results show that the fate model is more sensitive to model parameters i.e. biodegradation rate constant (kb) than the operational parameters, i.e. SRT and HRT. Furthermore, the responses showed sensitivity to pH, whereby acidic conditions provide a better environment for removing neutral forms and alkaline conditions were suitable for removing ionized forms, according to the ionized compound fate model.
60

Fate of Select Pharmaceutically Active Compounds in the Integrated Fixed Film Activated Sludge Process

Murray, Kyle January 2014 (has links)
Based on a diverse consortia of research completed within the last 15 years, it has been found that Pharmaceutical Compounds (PCs) are present in detectable levels within a variety of environmental matrices, including tap water. This is largely attributed to anthropogenic activities as humans are the majority consumer of PCs. As a result, the primary method of disposal is via wastewater pathways resulting from human excretion of ingested PCs. Based on past research into PC fate via the wastewater treatment process, only limited biotic and abiotic transformations are achieved – most PC’s are detected in the effluents of WWTP’s. This suggests that improving the removal of PCs during the wastewater treatment process provides a promising strategy for limiting the conveyance of PCs to the environment. Historically, studies regarding PC fate in WWTPs have predominantly focused on the activated sludge process. However, fixed film (biofilm) wastewater treatment technologies continue to gain popularity at full scale wastewater treatment facilities. The limited studies which investigated fixed film wastewater treatment processes have reported that improved transformation efficiencies were observed relative to activated sludge systems. Based on these previous studies, it was postulated that the more diverse bacterial consortium present within the Integrated Fixed Film Activated Sludge (IFAS) process, a novel treatment process which has recently gained popularity in North America, may lead to improved transformation efficiencies (“removals”) of these very complex compounds. Only one previous study which investigated the transformation efficiencies of the IFAS process compared to a control was found. It was therefore considered that an additional investigation into the IFAS process warrants further investigation. Four IFAS Sequencing Batch Biofilm Reactors (SBBRs) and four control Sequencing Batch Reactors (SBRs) were operated with varied experimental conditions in a 22 factorial design to investigate whether an observable difference in the level of PC transformations would result via the IFAS process when compared to a control. Experimental conditions were characterized by varying the operating Solids Retention Time (SRT) and mixed liquor temperature. For all other operational parameters, best efforts were made to ensure both reactors were operated under equivalent conditions. This permitted a true assessment of the effects of the inclusion of IFAS media. Reactors were investigated through three phases of sampling, under which the performance of the reactors was investigated through the measurement of the following parameters: • Conventional parameters (tCOD, sCOD, TAN, NO3-N) within the initial and final samples; • Operational parameters (MLSS, MLVSS, ESS); and • The transformation efficiencies achieved for 5 PC (Carbamazepine, Sulfamethoxazole, Trimethoprim, Atenolol and Acetaminophen). During all three phases of PC sampling, the pilot reactors were found to have been performing as anticipated with respect to conventional contaminant removals. Organic removals were found to be statistically similar between the IFAS and control reactors across all four experimental conditions. Full nitrification was observed for all reactors with the exception of the control SBR operated under the low SRT, low temperature condition. The IFAS SBBRs were found to demonstrate improved nitrification kinetics when compared to their respective controls operated under the same experimental conditions. This was believed to be related to the more diverse bacterial consortia present as a result of the IFAS biofilms. All reactors were generally believed to be operating at steady state and were within an acceptable range of the target operating conditions. Due to complications associated with the analysis of samples, only CBZ, TRIM, ATEN and ACE could be successfully quantitated. CBZ was found to not have been transformed to any appreciable level across all conditions investigated through either the IFAS SBBRs or control SBRs. ACE was transformed at efficiencies greater than 99% under all conditions and in both IFAS and control reactors and therefore no comparison could be made. TRIM and ATEN demonstrated improved transformation efficiencies under all conditions within the IFAS reactors. The presence of IFAS media, SRT and temperature were all found to be statistically significant effects through ANOVA using a confidence limit of 95%.

Page generated in 0.062 seconds