• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 16
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 49
  • 49
  • 49
  • 30
  • 20
  • 20
  • 17
  • 17
  • 16
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of clay addition on the settling ability of activated sludge as a proposed method to control filamentous bulking

Wells, Miriam January 2014 (has links)
Filamentous bulking is a problem that has long plagued activated sludge (AS) wastewater treatment plants (WWTPs). Much research has looked at its prevention and control but there is still no solution. The sludge microbiological community is very complex and there are many factors that can affect bulking. Clay addition in scaled-down activated sludge systems was investigated at concentrations of 0.4, 2.0 and 5.0 g/L along with sequencing batch reactor (SBR) parameters when run with a synthetic wastewater (SWW). The 5.0g/L concentration exhibited positive results on settling in the form of modified SVI but appeared to cause no reduction in filament length. These preliminary investigations indicate that clay may help improve sludge settling but make no difference in the abundance of filamentous microorganisms. The SBRs exhibited trends in regards to running systems with a synthetic wastewater. A loss of volatile suspended solids (VSS), coupled with increase in sludge volume index (SVI), suggested a link between lack of non-VSS and settling ability. This has implications in the importance of non-VSS such as grit or clay in research performed using SWWs.
2

Effect of Arsenic on the Denitrification Process in the Presence of Naturally-Produced Volatile Fatty Acids and Arsenic Removal by New Zealand Iron Sand (NZIS)

Panthi, Sudan Raj January 2009 (has links)
This thesis is comprised of two phases; the first phase concerns the effect of arsenic on the denitrification process in the presence of naturally-produced volatile fatty acids (VFAs); while the second phase evaluates the arsenic removal efficiency of New Zealand Iron Sand (NZIS) by adsorption. To accomplish the first phase of the study, VFAs were first produced naturally in an acid-phase anaerobic digester by using commercially-available soy flour. Secondly, a denitrifying biomass was cultivated in a sequencing batch reactor (SBR) using domestic wastewater as a feed solution. Finally, a series of biological denitrification batch tests were conducted in the presence of different concentrations of arsenic and nitrate. As mentioned, the VFAs were generated from an anaerobic digester using 40 g/L soy solution as a synthetic feed. The digester was operated at a solids retention time (SRT) and hydraulic retention time (HRT) of 10 days. The pH of the digester was measured to be 4.7 to 4.9 while the mean temperature was 31 ± 4 °C; however, both these parameters were not controlled. In the effluent of the digester, a mean VFA concentration of 5,997 ± 538 mg/L as acetic acid was achieved with acid speciation results of acetic (33 %), propionic (29 %), butyric (21 %), iso-valeric (5%) and n-valeric acid (12 %). The specific VFA production rate was estimated to be 0.028 mg VFA as acetic acid/mg VSS per day. The effluent sCOD was measured to be 14,800 mg/L (27.9 % of the total COD), as compared to 9,450 mg/L (16.8 % of total COD) in the influent of the digester. Thus, the COD solubilization increased by 11.1 % during digestion yielding a specific COD solubilization rate of 0.025 mg sCOD/mg VSS per day. The extent of the digestion process converting the substrate from particulate to soluble form was also evaluated via the specific TOC solubilization rate (0.008 mg TOC/mg VSS per day), and VSS reduction percentage (17.7 ± 1.8 %). A denitrifying biomass was developed successfully in an SBR fed with domestic sewage (100 % denitrification was achieved for the influent concentration of sCOD = 285 ± 45 mg/L and NH₄⁺-N = 32.5 ± 3.5 mg/L). A mean mixed liquor suspended solids (MLSS) of 3,007 ± 724 mg/L and a mean SRT of 20.7 ± 4.4 days were measured during the period of the research. The settleability of the SBR sludge was excellent evidenced by a low sludge volume index (SVI) measured to be between 50-120 mL/g (with a mean value of 87 ± 33 mL/g) resulting in a very low effluent solids concentration (in many cases less than 20 mg/L). Several preliminary tests were conducted to estimate the right dosage of VFAs (digester effluent), nitrates and arsenic to be added and to confirm the occurrence of denitrification in an appropriate time frame of 4-6 h. From these tests, an optimum C/N ratio was observed to be somewhere between 2 to 4, somewhat higher than all the theoretical C/N ratios required for a complete denitrification using the four major VFAs identified in the digester effluent. During the denitrification batch tests, it was also observed that some NO₃⁻- N was removed instantaneously by reacting with As (III) (As₂O₃); while an increase in alkalinity of around 5.60 mg as CaCO₃ produced per mg NO₃⁻- N reduction was also observed. This latter number was very close to the theoretical value of alkalinity production (i.e. 5.41 mg as CaCO₃ per mg NO₃⁻- N). The effect of arsenic on the denitrification process was evaluated by observing the specific denitrification rate in series of denitrification batch tests (with different concentrations of arsenic). Results from the denitrification batch tests showed that there was a clear effect for both As (III) and As (V) on denitrification. In particular, the specific denitrification rate fell from 0.37 to 0.01 g NO₃⁻- N /g VSS per day as the concentration of As (III) increased from 0 to 50 mg/L. In contrast, there was comparatively less effect for As (V); i.e. only a 37 % decrease in the specific denitrification rate (from 0.34 g NO₃⁻- N /g VSS per day to 0.23 g NO₃⁻- N /g VSS per day) when the initial arsenic concentration increased from 0 to a very high level of 2,000 mg/L. The effects of both the As (III) and As (V) forms of inorganic arsenic on the denitrification rate were further quantified by constructing exponential equation models. It was suspected that the effect of As (III) on denitrification was more substantial than the effect of As (V) because of the former’s toxicity to microbes. Finally, the fate of arsenic was tracked by examining bacterial uptake. During the normal denitrification batch tests (i.e. designed for evaluation of the effect of arsenic on denitrification), no significant arsenic removal was observed. However, additional batch tests with a comparatively low concentration of biomass revealed that the denitrifying biomass removed 1.35 µg As (III) /g dry biomass and 2.10 µg As (V) /g dry biomass. In the second phase of this research, a series of arsenic adsorption batch tests as well as a column test were performed to examine the arsenic (As (III) and As (V)) removal efficiency of NZIS from an arsenic-contaminated water. The kinetics and isotherms for adsorption were analysed in addition to studying the effect of pH during the batch tests. Breakthrough characteristics for both As (III) and As (V) were studied to appraise the effectiveness of NZIS treating an arsenic contaminated water. Batch tests were performed with different concentrations of arsenic as well as at different pH conditions. A maximum adsorption of As (III) of approximately 90 % occurred at a pH of 7.5, while the As (V) adsorption reached its maximum value of 97.6 % at a very low pH value of 3. Both Langmuir and Freundlich Models were tested and found to fit with R² values of more than 0.92 in all cases. From the Langmuir adsorption model, the maximum adsorption capacity of NZIS for As (III) was estimated to be 1,250 µg/g, significantly higher (about three times) than for As (V) of 500 µg/g. In column tests, arsenic-contaminated water with total As concentration of 400 µg/L (in either form of As) were treated and a pore volume (PV) of 700 and 300 yielded a total arsenic level less than the WHO guideline value of 10 µg/L for As (III) and As (V) respectively; while, the breakthrough occurred after a throughput of approximately 3,000 PV of As (III) and 2,700 PV of As (V) with an average flow rate of approximately 1.0 mL/min.
3

Nitrogen Removal From Dairy Manure Wastewater Using Sequencing Batch Reactors

Whichard, David P. 08 August 2001 (has links)
The purpose of this research was to characterize a flushed dairy manure wastewater and to develop the kinetic and stoichiometric parameters associated with nitrogen removal from the wastewater, as well as to demonstrate experimental and simulated nitrogen removal from the wastewater. The characterization showed that all the wastewaters had carbon to nitrogen ratios large enough for biological nitrogen removal. Analysis of carbon to phosphorus ratios showed that enough carbon is available for phosphorus removal but enough may not be available for both nitrogen and phosphorous removal in anaerobically pretreated wastewater. In addition, kinetic and stoichiometric parameters were determined for the biological nitrogen removal in sequencing batch reactors for the dairy manure wastewater. Results showed that many parameters are similar to those of municipal wastewater treatment systems. This characterization and the derived kinetic and stoichiometric parameters provided some of the information necessary for development of a nitrogen removal process in a sequencing batch reactor. Lab scale treatment of a 1:2 dilution of the anaerobically pretreated wastewater was demonstrated. Treatment was able to achieve between 89 and 93% removal of soluble inorganic nitrogen as well as up to 98% removal of biodegradable soluble and colloidal COD. In addition, a solids removal efficiency of between 79 and 94% was achieved. The lab scale treatment study demonstrated that sequencing batch reactors are capable of achieving high nitrogen removal on wastewaters with the carbon to nitrogen ratios of the dairy manure wastewater. Model simulations of the treatment process were used to develop a sensitivity analysis of the reactor feed configuration as well as the kinetic and stoichiometric parameters. The analysis of the feed configuration demonstrated the advantage of decreasing the amount of feed that is fed in the last feed period so that the effluent nitrate will be minimized. The analysis indicated that the autotrophic growth rate is one of the most important parameters to measure while error in the heterotrophic decay or yield values can lead to miscalculations of oxygen required for treatment. / Master of Science
4

Biological treatment of source separated urine in a sequencing batch reactor

McMillan, Morgan 12 1900 (has links)
Thesis (MScEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Urine contains up to 80% of nitrogen, 50 % of phosphates and 90 % of potassium of the total load in domestic wastewater but makes up less than 1% of the total volume (Larsen et al., 1996). The source separation and separate treatment of this concentrated waste stream can have various downstream advantages on wastewater infrastructure and treated effluent quality. The handling of undiluted source separated urine however poses various challenges from the origin onward. The urine has to be transported to a point of discharge and ultimately has to be treated in order to remove the high loads of organics and nutrients. Wilsenach (2006) proposed onsite treatment of source separated urine in a sequencing batch reactor before discharging it into the sewer system. This study focused on the treatment of urine in a sequencing batch reactor (SBR) primarily for removal of nitrogen through biological nitrification-denitrification. The aim of the study was to determine nitrification and denitrification kinetics of undiluted urine as well as quantification of the stoichiometric reactions. A further objective was to develop a mathematical model for nitrification and denitrification of urine using experimental data from the SBR. The SBR was operated in 24 hour cycles consisting of an anoxic denitrification phase and an aerobic nitrification phase. The sludge age and hydraulic retention time was maintained at 20 days. pH was controlled through influent urine during volume exchanges. Undiluted urine for the study was obtained from a source separation system at an office at the CSIR campus in Stellenbosch. Conditions in the reactor were monitored by online temperature, pH and ORP probes. The OUR of the system was also measured online. One of the main challenges in the biological treatment of undiluted urine was the inhibiting effect thereof on nitrification rate. The anoxic mass fraction was therefore limited to 17 % in order to allow longer aerobic phases and compensate for the slow nitrification rates. Volume exchanges were also limited to 5% of the reactor volume in order to maintain pH within optimal range. Samples from the reactor were analysed for TKN, FSA-N, nitrite-N, nitrate-N and COD. From the analytical results it was concluded that ammonia oxidising organisms and nitrite oxidising organism were inhibited as significant concentrations of ammonia-N and nitrite-N were present in the effluent. It was also concluded that nitrite oxidising organisms were more severely inhibited than ammonia oxidising organisms as nitrate-N was present in very low concentrations in the effluent and in some instances not present at all. Ultimately the experimental system was capable of converting 66% of FSA-N to nitrite- N/nitrate-N of which 44% was converted to nitrogen gas. On average 48% of COD was removed. A mathematical model was developed in spreadsheet form using a time step integration method. The model was calibrated with measured online data from the SBR and evaluated by comparing the output with analytical results. Biomass in the model was devised into three groups, namely heterotrophic organisms, autotrophic ammonia oxidisers (AAO) and autotrophic nitrite oxidisers (ANO). It was found that biomass fractionation into these three groups of 40% heterotrophs, 30% AAO and 30% ANO produced best results. The model was capable of reproducing the general trends of changes in substrate for the various organism groups as well as OUR. The accuracy of the results however varies and nearexact results were not always achievable. The model has some imperfections and limitations but provides a basis for future work.
5

The application of a membrane bioreactor for wastewater treatment on a northern Manitoban Aboriginal community

Frederickson, Kristinn Cameron 06 January 2006 (has links)
Water infrastructure on Aboriginal communities in Canada, and specifically Northern Manitoba is in sub-standard condition. A recent Government of Canada study indicated that an estimated $1.5 billion would need to be spent to improve this infrastructure. September 2003 through July 2004, an examination of the effectiveness of a membrane bioreactor (MBR) in a Northern Manitoban Aboriginal community took place. This study was intended to identify and test an appropriate and effective solution for the lack of adequate wastewater treatment in these communities. The MBR system, employing a Zenon ZW-10 ultrafiltration membrane, was designed and constructed at the University of Manitoba. It was installed and tested in two phases at the Opaskwayak Cree Nation Reserve in Northern Manitoba. Phase I was a direct comparison between the pilot-scale MBR and the community’s existing Sequencing Batch Reactor (SBR) with sand filter. This phase occurred from September 2003 until December 2003. The MBR, with an SRT of 20-days and an HRT of 10 hours, outperformed the SBR in every category despite 2 mechanical/electrical failures that resulted in the loss of biomass from the MBR. The SBR/Sand filter combination had BOD, TSS, and TKN concentrations of 30.3 mg/L, 27.5 mg/L, and 8.4 mg/L, respectively. By comparison, the BOD, TSS, and TKN concentrations in the MBR effluent were <6 mg/L, <5 mg/L, and 1.3 mg/L respectively. Phase II, from March 2004 through July 2004, tested the overall MBR efficacy and intended to assess a novel remote control and monitoring system. The MBR SRT was adjusted to 40-days and, as expected, the MBR MLVSS concentration increased to a relatively stable 5000 mg/L. The MBR continued to provide high quality effluent with some exceptions. Despite the 0.034 μm pore size, the total coliforms and TSS measured in the effluent were higher than in Phase I. This indicates a compromised membrane, faulty sampling procedures, or biological regrowth downstream of the membrane. This failure could point to the need for some form of tertiary disinfection. Also in Phase II, a remote control and monitoring program was implemented. The controlling PC was controlled via the internet using pcAnywhere software. The software allowed for real-time monitoring and complete control of the pilot system. In conclusion, the pilot-scale MBR yielded consistent, high quality wastewater effluent and this would benefit the pristine environments existing in Manitoba’s north. The potential hands-free operation could be utilized to provide support to communities lacking sufficient wastewater treatment know-how. / February 2006
6

Effect of different carbon sources and continuous aerobic conditions on the EBPR process

Pijuan Vilalta, Maite 05 October 2004 (has links)
No description available.
7

Impacts of temperature and salinity on nitrification rate and microbial community in laboratory scale sequencing batch reactors(SBRs)

Zhou, Yanmin, 周延敏 January 2011 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
8

The application of a membrane bioreactor for wastewater treatment on a northern Manitoban Aboriginal community

Frederickson, Kristinn Cameron 06 January 2006 (has links)
Water infrastructure on Aboriginal communities in Canada, and specifically Northern Manitoba is in sub-standard condition. A recent Government of Canada study indicated that an estimated $1.5 billion would need to be spent to improve this infrastructure. September 2003 through July 2004, an examination of the effectiveness of a membrane bioreactor (MBR) in a Northern Manitoban Aboriginal community took place. This study was intended to identify and test an appropriate and effective solution for the lack of adequate wastewater treatment in these communities. The MBR system, employing a Zenon ZW-10 ultrafiltration membrane, was designed and constructed at the University of Manitoba. It was installed and tested in two phases at the Opaskwayak Cree Nation Reserve in Northern Manitoba. Phase I was a direct comparison between the pilot-scale MBR and the community’s existing Sequencing Batch Reactor (SBR) with sand filter. This phase occurred from September 2003 until December 2003. The MBR, with an SRT of 20-days and an HRT of 10 hours, outperformed the SBR in every category despite 2 mechanical/electrical failures that resulted in the loss of biomass from the MBR. The SBR/Sand filter combination had BOD, TSS, and TKN concentrations of 30.3 mg/L, 27.5 mg/L, and 8.4 mg/L, respectively. By comparison, the BOD, TSS, and TKN concentrations in the MBR effluent were <6 mg/L, <5 mg/L, and 1.3 mg/L respectively. Phase II, from March 2004 through July 2004, tested the overall MBR efficacy and intended to assess a novel remote control and monitoring system. The MBR SRT was adjusted to 40-days and, as expected, the MBR MLVSS concentration increased to a relatively stable 5000 mg/L. The MBR continued to provide high quality effluent with some exceptions. Despite the 0.034 μm pore size, the total coliforms and TSS measured in the effluent were higher than in Phase I. This indicates a compromised membrane, faulty sampling procedures, or biological regrowth downstream of the membrane. This failure could point to the need for some form of tertiary disinfection. Also in Phase II, a remote control and monitoring program was implemented. The controlling PC was controlled via the internet using pcAnywhere software. The software allowed for real-time monitoring and complete control of the pilot system. In conclusion, the pilot-scale MBR yielded consistent, high quality wastewater effluent and this would benefit the pristine environments existing in Manitoba’s north. The potential hands-free operation could be utilized to provide support to communities lacking sufficient wastewater treatment know-how.
9

The application of a membrane bioreactor for wastewater treatment on a northern Manitoban Aboriginal community

Frederickson, Kristinn Cameron 06 January 2006 (has links)
Water infrastructure on Aboriginal communities in Canada, and specifically Northern Manitoba is in sub-standard condition. A recent Government of Canada study indicated that an estimated $1.5 billion would need to be spent to improve this infrastructure. September 2003 through July 2004, an examination of the effectiveness of a membrane bioreactor (MBR) in a Northern Manitoban Aboriginal community took place. This study was intended to identify and test an appropriate and effective solution for the lack of adequate wastewater treatment in these communities. The MBR system, employing a Zenon ZW-10 ultrafiltration membrane, was designed and constructed at the University of Manitoba. It was installed and tested in two phases at the Opaskwayak Cree Nation Reserve in Northern Manitoba. Phase I was a direct comparison between the pilot-scale MBR and the community’s existing Sequencing Batch Reactor (SBR) with sand filter. This phase occurred from September 2003 until December 2003. The MBR, with an SRT of 20-days and an HRT of 10 hours, outperformed the SBR in every category despite 2 mechanical/electrical failures that resulted in the loss of biomass from the MBR. The SBR/Sand filter combination had BOD, TSS, and TKN concentrations of 30.3 mg/L, 27.5 mg/L, and 8.4 mg/L, respectively. By comparison, the BOD, TSS, and TKN concentrations in the MBR effluent were <6 mg/L, <5 mg/L, and 1.3 mg/L respectively. Phase II, from March 2004 through July 2004, tested the overall MBR efficacy and intended to assess a novel remote control and monitoring system. The MBR SRT was adjusted to 40-days and, as expected, the MBR MLVSS concentration increased to a relatively stable 5000 mg/L. The MBR continued to provide high quality effluent with some exceptions. Despite the 0.034 μm pore size, the total coliforms and TSS measured in the effluent were higher than in Phase I. This indicates a compromised membrane, faulty sampling procedures, or biological regrowth downstream of the membrane. This failure could point to the need for some form of tertiary disinfection. Also in Phase II, a remote control and monitoring program was implemented. The controlling PC was controlled via the internet using pcAnywhere software. The software allowed for real-time monitoring and complete control of the pilot system. In conclusion, the pilot-scale MBR yielded consistent, high quality wastewater effluent and this would benefit the pristine environments existing in Manitoba’s north. The potential hands-free operation could be utilized to provide support to communities lacking sufficient wastewater treatment know-how.
10

Determining the efficiency of the anammox process for the treatment of high- ammonia influent wastewater

Gokal, Jashan 08 1900 (has links)
Submitted in fulfillment of the degree of Master of Applied Science: Biotechnology, Durban University of Technology, Durban, South Africa, 2017. / Domestic wastewater contains a high nutrient load, primarily in the form of Carbon (C), Nitrogen (N), and Phosphorous (P) compounds. If left untreated, these nutrients can cause eutrophication in receiving environments. Biological wastewater treatment utilizes a suspension of microorganisms that metabolize this excess nutrient load. Nitrogen removal in these systems are due to the synergistic processes of nitrification and denitrification, each of which requires its own set of operating parameters and controlling microbial groups. An alternative N-removal pathway termed the anammox process allows for total N-removal in a single step under anoxic conditions. This process, mediated by the anammox bacterial group, requires no organic carbon, produces negligible greenhouse gases and requires almost 50 % less energy than the conventional process, making it a promising new technology for efficient and cost-effective N-removal. In this study, a sequencing batch reactor (SBR) was established for the autotrophic removal of N-rich wastewater through an anammox-centric bacterial consortia. The key microbial members of this consortia were characterized and quantified over time using molecular methods and next generation sequencing to determine if the operational conditions had any effect on the seed inoculum population composition. Additionally, local South African wastewater treatment plants were screened for the presence of anammox bacteria through 16S rRNA amplification and enrichment in different reactor types. A 3 L bench scale SBR was inoculated with active biomass (~ 5 % (v/v)) sourced from a parent anammox enrichment reactor, and maintained at a temperature of 35 °C ± 1 °C. The reactor was fed with a synthetic wastewater medium containing no organic C, minimal dissolved oxygen (< 0.5 mg/L), and N in the form of ammonium and nitrite in the ratio of 1:1.3. The reactor was operated for a period of 366 days and the effluent ammonium, nitrite and nitrate were measured during this period. The hydraulic retention time was controlled at 4.55 days from Day 1 to Day 250, and thereafter shortened to 1.52 days from Day 251 to Day 360 due to an increased nitrogen removal rate (NRR). During Phase I of operation (Day 1 to Day 150), the reactor performance gradually increased up to an NRR of ~160 mg N/day. During Phase II (Day 151 to Day 250), the overall reactor performance decreased with the NRR decreasing to ~90 mg N/day, while Phase III (Day 251 to Day 366) displayed a gradual recovery of NRR back to the reactor optimum of ~160 mg N/day. The accumulation of nitrate in the effluent during the latter parts of Phase II and Phase III, coupled with oxygen ingress (~2.1 mg/L) in the same period, indicated that it was not the anammox pathway that was dominating N-removal within the reactor, but more likely the second half of the nitrification pathway mediated by the nitrite oxidizing bacteria (NOB). This was further confirmed through molecular analysis, which indicated that the bacterial population had shifted significantly over the course of reactor operation. Quantitative PCR methods displayed a decrease in all the key N-removing population groups from Day 1 to Day 140, and a marginal increase in anammox and aerobic ammonia oxidizing bacteria from Day 140 – Day 260. From Day 300 onwards, NOB had started dominating the system, simultaneously suppressing the growth of other N-removing bacterial groups. Despite this, the NRR peaked during this period, indicating an alternative mechanism for ammonia removal within the reactor system. A total population analysis using NGS was also performed, which corroborated the QPCR results and displayed a population shift away from anammox bacteria towards predominantly NOB and members of the phylum Chloroflexi. The proliferation of aerobic NOB and Chloroflexi, and the suppression of anammox bacteria, indicated that DO ingress was indeed the primary cause of the population shift within the reactor. Despite this population shift, N-removal within the reactor remained high. New pathways have recently emerged which implicate these two groups as potential N oxidizers, with specific NOB groups showing the ability for oxidation of ammonia through the comammox process, and members of the Phylum Chloroflexi being capable of nitrite reduction. This could imply that an alternate pathway was responsible for the majority of N-removal within the system, in addition to the anammox and conventional nitrification pathways. Additionally, in an attempt to detect a local anammox reservoir, eleven wastewater systems from around South Africa were screened for the presence of anammox bacteria. Through direct and nested PCR-based screening, anammox bacteria was not detectable in any of the activated sludge samples tested. Based on the operating conditions of the source wastewater systems, a subset of three sludge samples were selected for further enrichment. After 60-110 days of enrichment in multiple reactor configurations, only one reactor sample tested positive for the presence of anammox bacteria. Although this result indicates that anammox bacteria might not be ubiquitous within every biological wastewater system, it is more likely that anammox bacteria might only be present at undetectable levels, and that an extended enrichment prior to screening is necessary for a true representation of anammox bacterial prevalence in an environmental sample. / M

Page generated in 0.0989 seconds