• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 23
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 19
  • 17
  • 16
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Synthesis of nano sized Cu and Cu-W alloy by hydrogen reduction

Tilliander, Ulrika January 2005 (has links)
The major part of the present work, deals with the reduction kinetics of Cu2O powder and a Cu2O-WO3 powder mixture by hydrogen gas, studied by ThermoGravimetric Analysis (TGA). The reduction experiments were carried out both isothermally and non-isothermally on thin powder beds over different temperature intervals. During the experiments, the reductant gas flow rate was kept just above the starvation rate for the reaction to ensure that chemical reaction was the rate-controlling step. The activation energy for the reactions was evaluated from isothermal as well as non-isothermal reduction experiments. In the case of the reduction of Cu2O, the impact of the stability of the copper oxide on the activation energy for hydrogen reduction under identical experimental conditions is discussed. A closer investigation of additions of Ni or NiO to Cu2O did not have a perceptible effect on the kinetics of reduction. In the case of the reduction of the Cu2O-WO3 mixture, the reaction mechanism was found to be affected in the temperature range 923-973 K, which is attributed to the reaction/transformation in the starting oxide mixture. At lower temperatures, Cu2O was found to be preferentially reduced in the early stages, followed by the reduction of the tungsten oxide. At higher temperatures, the reduction kinetics was strongly affected by the formation of a complex oxide from the starting materials. It was found that the Cu2O-WO3 mixture underwent a reaction/transformation which could explain the observed kinetic behavior. The composition and microstructures of both the starting material and the reaction products were analyzed by X-ray diffraction (XRD) as well as by microprobe analysis. vi Kinetic studies of reduction indicated that, the mechanism changes significantly at 923 K and the product formed had unusual properties. The structural studies performed by XRD indicated that, at 923 K, Cu dissolved in W forming a metastable solid solution, in amorphous/nanocrystalline state. The samples produced at higher as well as lower temperatures, on the other hand, showed the presence two phases, pure W and pure Cu. The SEM results were in conformity with the XRD analysis and confirmed the formation of W/Cu alloy. TEM analysis results confirmed the above observations and showed that the particle sizes was about 20 nm. The structure of the W/Cu alloy produced in the present work was compared with those for pure copper produced from Cu2O produced by hydrogen reduction under similar conditions. It indicated that the presence of W hinders the coalescence of Cu particles and the alloy retains its nano-grain structure. The present results open up an interesting process route towards the production of intermetallic phases and composite materials under optimized conditions. / QC 20101222
82

Material characterisation, phase transitions, electrochemical properties and possible fuel cell applications of Nd₂₋ₓPrₓCuO₄ and Nd2-x-y LayPrₓCuO₄ systems

Patabendige, Chami N. K. January 2012 (has links)
The well-known lanthanide cuprates exist in two principal forms, T and T´, which behave as p-type and n-type conductors, respectively. In order to understand the structural properties and crystal chemistry from the T to T´ phase, the Nd₁.₈₋ₓLaₓPr₀.₂CuO₄ (NLPCO) system was studied varying the La substitution ratio (0≤x≤1.8) and then characterised using high temperature X-ray powder diffraction. From analysis of the X-ray diffraction patterns obtained at room temperature, there are clearly five distinguishable regions for the NLPCO system. They are, (1) monophasic T´ solid–solution (2) two phase mixture T´ + T´´ (3) monophasic T´´solid–solution (4) two phase mixture T´´ + O and finally (5) monophasic O phase solid–solution. The T´´ form has previously been suggested as an ordered form of T´; however here we show via high temperature X-ray diffraction studies that it is a non-transformable metastable phase formed on quenching of the T phase via an orthorhombically distorted variant. Also neutron diffraction and selected area electron diffraction (SAED) studies confirmed that the T ´´phase is 4- fold Cu coordinated. The structural, magnetic and electrical properties of this NLPCO series have been investigated for the selected compositions using X-ray diffraction, magnetization measurements, thermal analysis and conductivity measurements. The aim of the second half of this work was to discover the basic high temperature electrical characteristics of Nd₂₋ₓPrₓCuO₄ and investigate how this matches with those required for components on the SOFC cathode side to identify which dopant level shows highest conductivity and whether it is stable at different temperatures. The idea was to make a new concept in SOFC cathodes and current collector development, using n-type conductors instead of p- type conductors and to try to produce a high conductivity material which is stable under the chemical and thermal stresses that exist while under load that can be used in cathode or current collector applications. The Nd₂₋ₓPrₓCuO₄ (NPCO) series has been studied over a range of dopant levels (x=0.15 - 0.25) and maximum conductivity of 86.7 Scm⁻¹ has been obtained for the composition where x = 0.25. Also NPCO shows n-type semiconductor behaviour which gives operational advantages when operating at mild oxygen deficiency. AC impedance studies have been carried out on symmetrical cells to investigate the performance of NPCO as a cathode material. These studies mainly focused on polarization resistance and the activation energies of the cells. Low Rp values and low activation energies are obtained for a composite cathode compared to pure cathode material. Two configurations of NPCO as cathode materials were tested, pre-fired and in-siu fired. Pre-fired NPCO exhibited better performance than in-situ fired NPCO. Both in-situ and pre-fired current collecting NPCO still showed lowest activation energies which suggest good catalytic activity. From all of these studies, it is evident that the praseodymium doped neodymium cuprate material shows considerable promise as a potential cathode material for solid oxide fuel cell applications.
83

The initial phase of sodium sulfite pulping of softwood : A comparison of different pulping options

Deshpande, Raghu January 2016 (has links)
Single stage and two-stage sodium sulfite cooking were carried out on either spruce, pine or pure pine heartwood chips to investigate the influence of several process parameters on the initial phase of such a cook down to about 60 % pulp yield. The cooking experiments were carried out in the laboratory with either a lab-prepared or a mill-prepared cooking acid and the temperature and time were varied. The influences of dissolved organic and inorganic components in the cooking liquor on the final pulp composition and on the extent of side reactions were investigated. Kinetic equations were developed and the activation energies for delignification and carbohydrate dissolution were calculated using the Arrhenius equation. A better understanding of the delignification mechanisms during bisulfite and acid sulfite cooking was obtained by analyzing the lignin carbohydrate complexes (LCC) present in the pulp when different cooking conditions were used. It was found that using a mill-prepared cooking acid beneficial effect with respect to side reactions, extractives removal and higher stability in pH during the cook were observed compared to a lab-prepared cooking acid. However, no significant difference in degrees of delignification or carbohydrate degradation was seen.  The cellulose yield was not affected in the initial phase of the cook however; temperature had an influence on the rates of both delignification and hemicellulose removal. It was also found that the  corresponding activation energies increased in the order:  xylan, glucomannan, lignin and cellulose. The cooking temperature could thus be used to control the cook to a given carbohydrate composition in the final pulp. Lignin condensation reactions were observed during acid sulfite cooking, especially at higher temperatures. The LCC studies indicated the existence of covalent bonds between lignin and hemicellulose components with respect to xylan and glucomannan. LCC in native wood showed the presence of phenyl glycosides, ϒ-esters and α-ethers; whereas the α-ethers  were affected during sulfite pulping. The existence of covalent bonds between lignin and wood polysaccharides might be the rate-limiting factor in sulfite pulping. / The sulfite pulping process is today practised in only a small number of pulp mills around the globe and the number of sulfite mills that use sodium as the base (cation) is less than five. However, due to the increasing interest in the wood based biorefinery concept, the benefits of sulfite pulping and especially the sodium based variety, has recently gained a lot of interest. It was therefore considered to be of high importance to further study the sodium based sulfite process to investigate if its benefits could be better utilized in the future in the production of dissolving pulps. Of specific interest was to investigate how the pulping conditions in the initial part of the cook (≥ 60 % pulp yield) should be performed in the best way. Thus, this thesis is focused on the initial phase of sodium based single stage bisulfite, acid sulfite and two-stage sulfite cooking of either 100 % spruce, 100 % pine or 100 % pine heartwood chips. The cooking experiments were carried out with either a lab prepared or a mill prepared cooking acid and the temperature and cooking time were varied. Activation energies for different wood components were investigated as well as side reactions concerning the formation of thiosulfate. LCC (Lignin carbohydrates complexes) studies were carried out to investigate the influence of different cooking conditions on lignin carbohydrate linkages.
84

Synthèse et étude cinétique de l'homolyse de biomolécules utilisables comme agents théranostiques / Synthesis and kinetic study of the homolyse of biomolecules usable like theranostic agents

Obame Nkoghe, Germain 17 July 2013 (has links)
Ce travail est présenté en 2 parties. La première partie aborde la synthèse stéréocontrôlée de 2 séries de carbonucléosides de structures méthylènecyclopropane. Les molécules cibles sont des analogues de l’entécavir, une prodrogue utilisée en trithérapie pour lutter contre le VHB. Les synthèses des carbonucléosides cibles de la série I utilisent un chiron commun, un alcool obtenu par désymétrisation enzymatique d’un diol méso. La transformation chimique de cet intermédiaire clé permet d’obtenir le carbonucléoside (+)-17 en 8 étapes mettant en œuvre comme étapes cruciales un réarrangement de Curtius et la construction de la base uracile avec un rendement global de 23%. Le carbonucléoside appartenant à la série II, a été synthétisé en 10 étapes mettant en jeu une réaction de Mitsunobu, une acylation chimique et contrairement à l’approche précédente, la désymétrisation enzymatique d’un diol méso n’a pas permis d’obtenir le carbonucléoside cible énantiopure. La seconde partie est consacrée à l’activation et l’homolyse des alcoxyamines pour une application en théranostique. La synthèse de l’alcoxyamine modèle présente un groupement vinyl pyridine et un nitroxyde SG1. L’activation est réalisée par protonation, oxydation, méthylation et benzylation de la partie pyridyle et met en évidence l’importance de la polarité. Elle a permis d’obtenir des espèces hautement labiles qui libèrent un radical alkyle et le nitroxyde SG1, avec notamment des valeurs de la constante de dissociation kd plus élevées et donc des énergies d’activation Ea plus faibles par rapport à l’alcoxyamine non activée. / This work is presented in 2 parts. The first part is dedicated to the stereocontrolled synthesis of 2 series of carbonucleosides of methylenecyclopropane structure. The target molecules are analogs of entecavir, a prodrug used in triple therapy to fight against HBV. The syntheses of the carbonucleosides targets of the series I use a common chiron, an alcohol obtained by enzymatic desymmetrization of meso-diol. For example, the chemical transformation of this key intermediate allows to obtain carbonucleoside (+)-16 in 8 steps as crucial steps involving a Curtius rearrangement and the construction of the uracil base with 23% overall yield. The carbonucleoside belonging to the series II was first synthesized in 10 steps involving a reaction of Mitsunobu, a chemical acylation. Howerer the enzymatic desymmetrization of a meso-diol did not get the target carbonucleoside in an enantiopur form. The second part is dedicated to the activation and the homolysis of the alcoxyamines for a theranostic application. The synthesis of the model alcoxyamine is made from vinyl pyridine and nitroxide SG1. Activation is carried out by protonation, oxidation, methylation and benzylation of the pyridyl part and highlights the importance of polarity. It allowed getting highly labile species that release an alkyl radical and nitroxide SG1, with notably higher kd dissociation constant values and therefore activation energies Ea lower compared to the alcoxyamine not enabled.
85

Estudo cin?tico da degrada??o t?rmica e catal?tica de petr?leo pesado usando Al-MCM-41

Oliveira, Aline Ara?jo Alves de 09 August 2013 (has links)
Made available in DSpace on 2014-12-17T15:42:27Z (GMT). No. of bitstreams: 1 AlineAAO_TESE.pdf: 3075922 bytes, checksum: bd3bdc6aafacdcbe05784c0fbe751097 (MD5) Previous issue date: 2013-08-09 / The mesoporous nanostructured materials have been studied for application in the oil industry, in particular Al-MCM-41, due to the surface area around 800 to 1.000 m2 g-1 and, pore diameters ranging from 2 to 10 nm, suitable for catalysis to large molecules such as heavy oil. The MCM-41 has been synthesized by hydrothermal method, on which aluminum was added, in the ratio Si/Al equal to 50, to increase the generation of active acid sites in the nanotubes. The catalyst was characterized by X-ray diffraction (XRD), surface area by the BET method and, the average pore volume BJH method using the N2 adsorption, absorption spectroscopy in the infrared Fourier Transform (FT-IR) and determination of surface acidity with application of a probe molecule - n-butylamine. The catalyst showed well-defined structural properties and consistent with the literature. The overall objective was to test the Al-MCM-41 as catalyst and thermogravimetric perform tests, using two samples of heavy oil with API ? equal to 14.0 and 18.5. Assays were performed using a temperature range of 30-900 ? C and heating ratios (β) ranging from 5, 10 and 20 ?C min-1.The aim was to verify the thermogravimetric profiles of these oils when subjected to the action of the catalyst Al- MCM-41. Therefore, the percentage ranged catalyst applied 1, 3, 5, 10 and 20 wt%, and from the TG data were applied two different kinetic models: Ozawa-Flynn-Wall (OFW) and Kissinger-Akahrira-Sunose (KAS).The apparent activation energies found for both models had similar values and were lower for the second event of mass loss known as cracking zone, indicating a more effective performance of Al-MCM-41 in that area. Furthermore, there was a more pronounced reduction in the value of activation energy for between 10 and 20% by weight of the oil-catalyst mixture. It was concluded that the Al-MCM-41 catalyst has applicability in heavy oils to reduce the apparent activation energy of a catalyst-oil system, and the best result with 20% by weight of Al-MCM-41 / Os materiais mesoporosos nanoestruturados vem sendo estudados para aplica??o na ind?stria do petr?leo, em especial o Al-MCM-41, devido ? ?rea superficial em torno de 800-1000 m2g-1 e di?metro de poros variando de 2 a 10 nm, adequado para cat?lise de mol?culas grandes como petr?leos pesados. O MCM-41 foi sintetizado pelo m?todo hidrot?rmico, o qual foi adicionado Alum?nio numa propor??o Si/Al igual ? 50, a fim de aumentar a gera??o de s?tios ?cidos ativos nos nanotubos. O catalisador foi caracterizado por difra??o de Raios-X (DRX), ?rea superficial pelo m?todo BET e volume m?dio de poros pelo m?todo BJH atrav?s da adsor??o de N2, espectroscopia de absor??o na regi?o do infravermelho por Transformada de Fourier (FT-IR) e determina??o da acidez superficial com aplica??o de uma mol?cula sonda nbutilamina. O catalisador apresentou propriedades estruturais bem definidas e coerentes com a literatura. O objetivo geral foi testar o Al-MCM-41 como catalisador e realizar ensaios termogravim?tricos, utilizando duas amostras de petr?leo pesado com ?API iguais ? 14,0 e 18,5. Os ensaios foram realizados usando uma faixa de temperatura de 30 900?C, e raz?es de aquecimento (β) variando de 5, 10 e 20 ?Cmin-1. O intuito era verificar os perfis termogravim?tricos destes petr?leos quando submetidos ? a??o do catalisador Al-MCM-41. Para tanto, variou-se o percentual de catalisador aplicado in situ: 1, 3, 5, 10 e 20% em massa e, a partir dos dados termogravim?tricos foram aplicados dois modelos cin?ticos diferentes: Ozawa-Flynn-Wall (OFW) e Kissinger- Akahrira-Sunose (KAS). As energias de ativa??o aparente encontradas para ambos os modelos tinham valores semelhantes e eram menores para o segundo evento de perda de massa conhecido como zona de craqueamento, indicando uma atua??o mais efetiva do Al-MCM-41 nessa zona. Al?m disso, constatou-se uma diminui??o mais acentuada no valor das energias de ativa??o para valores entre 10 e 20% em massa da mistura catalisador-?leo. Concluiu-se que o Al-MCM-41 possui aplicabilidade catal?tica em petr?leos pesados diminuindo a energia de ativa??o aparente de um sistema catalisador?leo, sendo o melhor resultado com 20% em massa de Al-MCM-41
86

Additives on the Curing of Phenolic Novolak Composites

Lele, Stephen, slele@bigpond.net.au January 2006 (has links)
The research programme studied the cure reaction of a phenolic novolak resin and the effects of various additives and fillers on the reaction. The programme utilised the recently developed thermal analysis technique of temperature-modulated differential scanning calorimetry (TMDSC) performed in conjunction with other available thermal analysis techniques. TMDSC enables the signal for the heat of reaction to be separated from the underlying specific heat change in the resin. This meant that the reaction could be studied without interference from any physical changes in the resin. The manufacture of composite brake materials required the use of numerous additives and fillers to produce the desired properties. The influence of such additives on the cure rate and final properties of the resin was known to occur but had not previously been measured due to the difficulties presented by the presence of opaque additives. Some additives also underwent thermally induced physical changes in the temperature range of the cure. The final properties and the processing of new brake materials undergoing development often required trial and error adjustments to compensate for changes in cure rate. An understanding of the influence of additives would enable more rapid commercial development of brake materials through an improvement in the ability to predict both the properties of the product and the optimal processing parameters. Processing efficiency could also be improved through detailed knowledge of the kinetics. Moulding cycle times and post-baking times and temperatures were longer than necessary in order to ensure adequate cure at the end of each stage because of the lack of kinetic data. The cure of phenolic resin has been shown to be highly complicated with numerous alternate and competing reactions. For the manufacture of composite materials, knowledge of the kinetic parameters of individual reactions is not considered to be important; rather the overall kinetic parameters are required for prediction. Therefore the kinetic model parameters that best described the observed behaviour were chosen even though the model had no basis in the molecular interaction theory of reaction. Rather it served as a convenient tool for predictions. Characterisation of the resin proved to be difficult due to the presence of overlapping peaks, and volatile reaction products. TMDSC was successfully used to determine the reaction kinetics of the pure resin and the influence of certain additives on the reaction kinetics. The determination of the kinetic parameters using TMDSC agreed well with the traditional Differential Scanning Calorimetry isothermal and non-isothermal techniques. Both the Perkin-Elmer and TA Instruments were utilised for the research and were found to provide reasonably good agreement with each other. The capabilities and limitations of the individual instruments were critically examined, frequently beyond the manufacturers' specifications. TMDSC suffers from a limitation in the heating rate of the sample compared to DSC. However, it was observed that valuable information could still be obtained from TMDSC despite using heating rates that were higher than specified by manufacturers. Hot Stage Microscopy and thermogravimetry were additional experimental techniques used to aid in the characterisation of the resin. Some inhomogeneity of the resin was identified as well as differences in the behaviour of the cure between open (constant pressure) and closed (constant volume) environments were observed. A novel method of determining the orders of the cure reactions and their kinetic parameters was utilised. Reaction models for the overall cure reactions were postulated and tested by fitment to sections of experimental data in temperature regions which appeared to be free of interference from overlapping peaks. Once an individual peak was reasonably well modelled, adjacent overlapping peaks were able to be modelled both individually and in combinations by fitment to experimental data. The Solver function in Microsoft Excel was utilised to find the best fitting model parameters for the experimental data. The model parameters were able to be refined as overlapping peaks were progressively incorporated into the calculations. This method produced results that agreed well with the traditional method of analysing reaction peak temperatures at multiple scanning rates. Model fitment was shown to be of benefit where overlapping reactions occur. Various model scenarios could be tested and optimised to particular sections of experimental data. This enabled the researcher to easily identify areas of possible anomalies and postulate alternative scenarios. The accuracy of the postulated model was able to be determined by its successful fitment to experimental data from experiments run under different conditions.
87

Energetics and Kinetics of Dislocation Initiation in the Stressed Volume at Small Scales

Li, Tianlei 01 December 2010 (has links)
Instrumented nanoindentation techniques have been widely used in characterizing mechanical behavior of materials in small length scales. For defect-free single crystals under nanoindentation, the onset of elastic-plastic transition is often shown by a sudden displacement burst in the measured load-displacement curve. It is believed to result from the homogeneous dislocation nucleation because the maximum shear stress at the pop-in load approaches the theoretical strength of the material and because statistical measurements agree with a thermally activated process of homogeneous dislocation nucleation. For single crystals with defects, the pop-in is believed to result from the sudden motion of pre-existing dislocations or heterogeneous dislocation nucleation. If the sample is prestrained before nanoindentation tests, a monotonic decrease of the measured pop-in load with respect to the increase of prestrain on Ni and Mo single crystals is observed. A similar trend is also observed that the pop-in load will gradually decrease if the size of indenter tip radius increases. This dissertation presents a systematic modeling endeavor of energetics and kinetics of defect initiation in the stressed volume at small scales. For homogeneous dislocation nucleation, an indentation Schmid factor is determined as the ratio of maximum resolved shear stress to the maximum contact pressure. The orientation-depended nanoindentation pop-in loads are predicted based on the indentation Schmid factor, theoretical strength of the material, indenter radius, and the effective indentation modulus. A good agreement has been reached when comparing the experimental data of nanoindentation tests on NiAl, Mo, and Ni, with different loading orientations to theoretical predictions. Statistical measurements generally confirm the thermal activation model of homogeneous dislocation nucleation, because the extracted dependence of activation energy on resolved shear stress is almost unique for all the indentation directions. For pop-in due to pre-existing defects, the pop-in load is predicted to be dependent on the defect density and the critical strength for heterogeneous dislocation nucleation. The cumulative probability of pop-in loads contains convoluted information from the homogenous dislocation nucleation, which is sensitive to temperature and loading rate, and heterogeneous dislocation nucleation due to the unstable change of existing defect network, which is sensitive to the initial defect distribution.
88

Electronic Structure Calculations of Point Defects in Semiconductors / Elektronstrukturberäkningar av punktdefekter i halvledare

Höglund, Andreas January 2007 (has links)
In this thesis point defects in semiconductors are studied by electronic structure calculations. Results are presented for the stability and equilibrium concentrations of native defects in GaP, InP, InAs, and InSb, for the entire range of doping conditions and stoichiometry. The native defects are also studied on the (110) surfaces of InP, InAs, and InSb. Comparing the relative stability at the surface and in the bulk, it is concluded that the defects have a tendency to migrate to the surface. It is found that the cation vacancy is not stable, but decomposes into an anion antisite-anion vacancy complex. The surface charge accumulation in InAs is explained by complementary intrinsic doping by native defects and extrinsic doping by residual hydrogen. A technical investigation of the supercell treatment of defects is performed, testing existing correction schemes and suggesting a more reliable alternative. It is shown that the defect level of [2VCu-IIICu] in the solarcell-material CuIn1-xGaxSe2 leads to a smaller band gap of the ordered defect γ-phase, which possibly explains why the maximal efficiency for CuIn1-xGaxSe2 has been found for x=0.3 and not for x=0.6, as expected from the band gap of the α-phase. It is found that Zn diffuses via the kick-out mechanism in InP and GaP with activation energies of 1.60 eV and 2.49 eV, respectively. Explanations are found for the tendency of Zn to accumulate at pn-junctions in InP and to why a relatively low fraction of Zn is found on substitutional sites in InP. Finally, it is shown that the equilibrium solubility of dopants in semiconductors can be increased significantly by strategic alloying. This is shown to be due to the local stress in the material, and the solubility in an alloy can in fact be much higher than in either of the constituting elements. The equilibrium solubility of Zn in Ga0.9In0.1P is for example five orders of magnitude larger than in GaP or InP.
89

Chloromethane Complexation by Cryptophanes : Host-Guest Chemistry Investigated by NMR and Quantum Chemical Calculations

Takacs, Zoltan January 2012 (has links)
Host–guest complexes are widely investigated because of their importance in many industrial applications. The investigation of their physico–chemical properties helps understanding the inclusion phenomenon. The hosts investigated in this work are cryptophane molecules possessing a hydrophobic cavity. They can encapsulate small organic guests such as halo–methanes (CH2Cl2, CHCl3). The encapsulation process was investigated from both the guest and the host point of view. With the help of Nuclear Magnetic Resonance (NMR), the kinetics of complex formation was determined. The information was further used to obtain the activation energies of the processes. Having done this on five different cryptophanes, it is possible to relate the energies to structural differences between the hosts. Via the dipolar interaction between the guest’s and host’s protons, one can get information on the orientation of the guest inside the cavity. Moreover, the dynamics of the guest can be further investigated by its relaxation properties. This revealed restricted motion of the guest inside the host cavity. Not only the nature of the guest plays an important role. The host is also changing its properties upon encapsulation. All the cryptophanes investigated here can exchange rapidly between many conformers. These conformers have different–sized cavities. Quantum chemical optimization of the structure of the conformers makes volume estimation possible. Not only the cavity volumes, but also the quantum-chemically obtained energies and the calculated chemical shifts of the carbon–13 atoms can be helpful to follow the changes of the host upon complex formation. The host cannot be considered as a rigid entity. Analysis of variable temperature proton and carbon-13 spectra shows that the encapsulation can be considered as a mixture of conformational selection and induced fit. The structures of the formed complexes are further investigated by means of two-dimensional nuclear Overhauser spectroscopy (NOESY). The complex formation, its kinetics and thermodynamics are found to be a complicated function of structure elements of the host, the cavity size and the guest size and properties. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Accepted. Paper 5: Manuscript.</p><p> </p>
90

Innovative process solutions towards recycling of salt cake from secondary aluminum smelting

Li, Peng January 2012 (has links)
To offer better solutions for the recycling of salt cake from secondary aluminum melting, several innovative investigations were carried out based on hydrometallurgical and pyrometallurgical views. Thermal diffusivity measurements as a function of temperature on salts-Al composites having various compositions (0, 2, 4, 6, 8, 10, 12wt pct metallic Al) were carried out. Its attempt to derive theoretical relationships between aluminium contents in the salt-Al composites and the thermal conductivities so that these would serve as calibration curves for industrial samples taken out from secondary aluminium re-melting at a later stage. The AlN hydrolysis behavior in NaCl solution was investigated by immersing pure AlN powder in deionized water, 0.3mol/l NaCl aq, 0.6mol/l NaCl aq and NaCl solution respectively with CO2 bubbling at 291K. The results showed that AlN powder underwent enhanced hydrolysis in NaCl aq than that in deionized water, while, the introduction of CO2 was found to hinder the hydrolysis even in the presence of NaCl. The characterization of the products after hydrolysis was carried out using XRD, SEM and TEM analyses. It was shown that the hydrolysis process included a slow-reaction period involving the dissolution of aluminum hydroxide layer around raw AlN particle, followed by the precipitation of aluminum hydroxide gel and the crystallization of boehmite, bayerite and gibbsite. The effects of sodium chloride concentration on the hydrolysis behavior are presented. The leaching process in CO2-saturated water showed that, at a solid to liquid ratio of 1:20 and 3h at 291K, the extraction of Na and K from the dross could be kept as high as 95.6% and 95.9%, respectively. At the same time, with continuous CO2 bubbling, the mass of generated NH3 during the leaching process decreased significantly, also the escaping NH3 gas decreased from 0.25mg in pure water down to &lt;0.006mg. The above results showed that the introduction of CO2 causes hindrance to the hydrolysis of AlN, meanwhile, effective absorption of ammonia. The plausible mechanisms for the observed phenomena are discussed. The concept of the leaching of the salt cake by carbonated water and the consequent retention of AlN in the leach residue opens up a promising route towards an environment-friendly recycling process for the salt cake viz. recovery of the salts, utilization of CO2 and further processing of the dross residue, towards the synthesis of SiAlON from the leach residues.   In alternative route to the processing of salt cake, the ammonia gas evolved by hydrolysis of AlN was collected by CO2-saturated water during water leaching at 373K. The products, i.e. ammonium carbonates which are free of chlorides, has application as a fertilizer, besides that, this method also has the advantage of fixing carbon from CO2, which is the subject of many investigations around the world. The oxidation behavior of composites SiMgAlON phases (β-SiAlON, MgAlON and 15R) synthesized from the residue during the leaching treatment of salt cake and corresponding synthetic samples was investigated in air by thermogravimetric measurements. The oxidation studies reveal the effects of impurities, namely, Fe2O3 and CaO present in the salt cake residue. From the view of kinetics, the addition of Fe2O3 brings a lower activation energy and more aggressive oxidation. The additive of CaO caused the shrinkage during the synthesis and liquid formation during the oxidation above 1673K, thus retard the oxidation rate. The impurities of CaO and Fe2O3 in the leaching residue can result in an aggressive oxidation at low temperature and a protective oxidation at temperatures above the eutectic point. From the view of phase evolution, with the progress of oxidation, the composition of the material being oxidized moved towards the Al2O3-rich corner of MgO-Al2O3-SiO2 or CaO-MgO-Al2O3-SiO2 phase diagrams relevant to SiMgAlON composite. At lower temperatures, the addition of Fe2O3 and CaO facilitated the formation of cordierite and anorthite, respectively. With the increasing of temperature, islands of silicate melt were formed dissolving these oxides, with the liquidus temperature getting lowered as a consequence. The liquid phase formed engulfed the adjacent solid phases providing strong mobility for the cations and enabling the crystal growth. As a result, intermediate products, i.e. cordierite, anorthite, spinel, which formed earlier during oxidation are found to get dissolved in the liquid phase. / <p>QC 20120912</p>

Page generated in 0.1096 seconds