Spelling suggestions: "subject:"Active codistribution betworks"" "subject:"Active codistribution conetworks""
1 |
Adaptive control for active distribution networksSansawatt, Thipnatee Punim January 2012 (has links)
Rise of the global environmental awareness and climate change impacts caused by greenhouse gases emissions brings about a revolution in the power and energy industries to reduce fossil fuels and promote low-carbon and renewable distributed generation (DG). The new dimensions, mainly encouraged by the governments’ legislative targets and incentives, have allowed the development of DG worldwide. In the U.K., renewable DG especially wind is being connected on distribution networks and ranges widely in scales. Despite the growing number of potential DG sites, the surplus generation present on the passive networks can lead to some technical problems. In particular, rural networks where wind farms exist are prone to voltage rise and line thermal constraints. In order to accommodate new DG and ensure security of supply and network reliability, active management to mitigate these issues are required. In addition, the duties to provide cost-effective DG connections at avoided expensive investment incurred from conventional solutions, e.g., reinforcement and maintain robust network are a major challenge for Distribution Network Operators (DNOs). This thesis endeavours to develop an adaptive control scheme that provides local and real-time management against voltage variations and line capacity overload at the point of wind connections on rural distribution networks. Taking into account maximising power exports and providing an economically-viable control scheme, the wind turbine’s capability, comprising reactive power control and active power curtailment, is used. Whilst the thesis concentrates on the decentralised control applying several different algorithms, in addition, semi-coordinated and centralised approaches that adopt on-load tap changing transformers’ regulation and Optimal Power Flow tool are developed. Comparisons of these approaches based upon measures, i.e., economics, DG penetration and performance are determined. As an outcome, the developed scheme can enable growing integration of renewable DG on distribution networks and can be seen as an interim solution for the DNOs towards Smart Distribution Networks.
|
2 |
Component Modeling and Three-phase Power-flow Analysis for Active Distribution SystemsKamh, Mohamed 19 January 2012 (has links)
This thesis presents a novel, fast, and accurate 3 steady-state power-flow analysis (PFA) tool for the real-time operation of the active distribution systems, also known as the active distribution networks (ADN), in the grid-tied and islanded operating modes. Three-phase power-flow models of loads, transformers, and multi-phase power lines and laterals are provided. This thesis also presents novel steady-state, fundamental-frequency, power-flow models of voltage-sourced converter (VSC)-based distributed energy resource (DER) units. The proposed models address a wide array of DER units, i.e., (i) variable-speed wind-driven doubly-fed asynchronous generator-based and (ii) single/three-phase VSC-coupled DER units. In addition, a computationally-efficient technique is proposed and implemented to impose the operating constraints of the VSC and the host DER unit within the context of the developed PFA tool. Novel closed forms for updating the corresponding VSC power and voltage reference set-points are proposed to guarantee that the power-flow solution fully complies with the VSC constraints. All the proposed DER models represent (i) the salient VSC control strategies and objectives under balanced and unbalanced power-flow scenarios and (ii) all the operating limits and constraints of the VSC and its host DER unit.
Also, the slack bus concept is revisited, associated with the PFA, where a 3 distributed slack bus (DSB) model is proposed for the PFA and operation of islanded ADNs. Distributing the real and reactive slack power among several DER units is essential to provide a realistic power-flow approach for ADNs in the absence of the utility bus. The proposed DSB model is integrated with the developed 3 PFA tool to form a complete ADN PFA package.
The new PFA tool, including the proposed DER and DSB models, is tested using several benchmark networks of different sizes, topologies, and parameters. Many case studies, encompassing a wide spectrum of DER control specifications and operating modes, are conducted to demonstrate (i) the numerical accuracy of the proposed models of the DER units and their operating constraints, (ii) the effectiveness of the proposed DSB model for the islanded ADN PFA, and (iii) the computational efficiency of the integrated PFA software tool irrespective of the network topology and parameters.
|
3 |
Component Modeling and Three-phase Power-flow Analysis for Active Distribution SystemsKamh, Mohamed 19 January 2012 (has links)
This thesis presents a novel, fast, and accurate 3 steady-state power-flow analysis (PFA) tool for the real-time operation of the active distribution systems, also known as the active distribution networks (ADN), in the grid-tied and islanded operating modes. Three-phase power-flow models of loads, transformers, and multi-phase power lines and laterals are provided. This thesis also presents novel steady-state, fundamental-frequency, power-flow models of voltage-sourced converter (VSC)-based distributed energy resource (DER) units. The proposed models address a wide array of DER units, i.e., (i) variable-speed wind-driven doubly-fed asynchronous generator-based and (ii) single/three-phase VSC-coupled DER units. In addition, a computationally-efficient technique is proposed and implemented to impose the operating constraints of the VSC and the host DER unit within the context of the developed PFA tool. Novel closed forms for updating the corresponding VSC power and voltage reference set-points are proposed to guarantee that the power-flow solution fully complies with the VSC constraints. All the proposed DER models represent (i) the salient VSC control strategies and objectives under balanced and unbalanced power-flow scenarios and (ii) all the operating limits and constraints of the VSC and its host DER unit.
Also, the slack bus concept is revisited, associated with the PFA, where a 3 distributed slack bus (DSB) model is proposed for the PFA and operation of islanded ADNs. Distributing the real and reactive slack power among several DER units is essential to provide a realistic power-flow approach for ADNs in the absence of the utility bus. The proposed DSB model is integrated with the developed 3 PFA tool to form a complete ADN PFA package.
The new PFA tool, including the proposed DER and DSB models, is tested using several benchmark networks of different sizes, topologies, and parameters. Many case studies, encompassing a wide spectrum of DER control specifications and operating modes, are conducted to demonstrate (i) the numerical accuracy of the proposed models of the DER units and their operating constraints, (ii) the effectiveness of the proposed DSB model for the islanded ADN PFA, and (iii) the computational efficiency of the integrated PFA software tool irrespective of the network topology and parameters.
|
4 |
From Passive to Active Electric Distribution NetworksCampillo, Javier January 2016 (has links)
Large penetration of distributed generation from variable renewable energy sources, increased consumption flexibility on the demand side and the electrification of transportation pose great challenges to existing and future electric distribution networks. This thesis studies the roles of several actors involved in electric distribution systems through electricity consumption data analysis and simulation models. Results show that real-time electricity pricing adoption in the residential sector offers economic benefits for end consumers. This occurs even without the adoption of demand-side management strategies, while real-time pricing also brings new opportunities for increasing consumption flexibility. This flexibility will play a critical role in the electrification of transportation, where scheduled charging will be required to allow large penetration of EVs without compromising the network's reliability and to minimize upgrades on the existing grid. All these issues add significant complexity to the existing infrastructure and conventional passive components are no longer sufficient to guarantee safe and reliable network operation. Active distribution networks are therefore required, and consequently robust and flexible modelling and simulation computational tools are needed for their optimal design and control. The modelling approach presented in this thesis offers a viable solution by using an equation-based object-oriented language that allows developing open source network component models that can be shared and used unambiguously across different simulation environments.
|
5 |
Assessment, Planning and Control of Voltage and Reactive Power in Active Distribution NetworksFarag, Hany Essa Zidan January 2013 (has links)
Driven by economic, technical and environmental factors, the energy sector is currently undergoing a profound paradigm shift towards a smarter grid setup. Increased intake of Distributed and Renewable Generation (DG) units is one of the Smart Grid (SG) pillars that will lead to numerous advantages among which lower electricity losses, increased reliability and reduced greenhouse gas emissions are the most salient.
The increase of DG units’ penetration will cause changes to the characteristics of distribution networks from being passive with unidirectional power flow towards Active Distribution Networks (ADNs) with multi-direction power flow. However, such changes in the current distribution systems structure and design will halt the seamless DG integration due to various technical issues that may arise. Voltage and reactive power control is one of the most significant issues that limit increasing DG penetration into distribution systems. On the other hand, the term microgrid has been created to be the building block of ADNs. A microgrid should be able to operate in two modes of operation, grid-connected or islanded. The successful implementation of the microgrid concept demands a proper definition of the regulations governing its integration in distribution systems. In order to define such regulations, an accurate evaluation of the benefits that microgrids will bring to customers and utilities is needed. Therefore, there is a need for careful consideration of microgrids in the assessment, operation, planning and design aspects of ADNs. Moreover, SG offers new digital technologies to be combined with the existing utility grids to substantially improve the overall efficiency and reliability of the network. Advanced network monitoring, two ways communication acts and intelligent control methods represent the main features of SG. Thus it is required to properly apply these features to facilitate a seamless integration of DG units in ADNs considering microgrids.
Motivated by voltage and reactive power control issues in ADNs, the concept of microgrids, and SG technologies, three consequent stages are presented in this thesis. In the first stage, the issues of voltage and reactive power control in traditional distribution systems are addressed and assessed in order to shed the light on the potential conflicts that are expected with high DG penetration. A simple, yet efficient and generic three phase power flow algorithm is developed to facilitate the assessment. The results show that utility voltage and reactive power control devices can no longer use conventional control techniques and there is a necessity for the evolution of voltage and reactive power control from traditional to smart control schemes. Furthermore, a probabilistic approach for assessing the impacts of voltage and reactive power constraints on the probability of successful operation of islanded microgrids and its impacts on the anticipated improvement in the system and customer reliability indices is developed. The assessment approach takes into account: 1) the stochastic nature of DG units and loads variability, 2) the special philosophy of operation for islanded microgrids, 3) the different configurations of microgrids in ADNs, and 4) the microgrids dynamic stability. The results show that voltage and reactive power aspects cannot be excluded from the assessment of islanded microgrids successful operation.
The assessment studies described in the first stage should be followed by new voltage and reactive power planning approaches that take into account the characteristics of ADNs and the successful operation of islanded microgrids. Feeders shunt capacitors are the main reactive power sources in distribution networks that are typically planned to be located or reallocated in order to provide voltage support and reduce the energy losses. Thus, in the second stage, the problem of capacitor planning in distribution network has been reformulated to consider microgrids in islanded mode. The genetic algorithm technique (GA) is utilized to solve the new formulation. The simulation results show that the new formulation for the problem of capacitor planning will facilitate a successful implementation of ADNs considering islanded microgrids.
In the third stage, the SG technologies are applied to construct a two ways communication-based distributed control that has the capability to provide proper voltage and reactive power control in ADNs. The proposed control scheme is defined according to the concept of multiagent technology, where each voltage and reactive power control device or DG unit is considered as a control agent. An intelligent Belief-Desire-Intention (BDI) model is proposed for the interior structure of each control agent. The Foundation for Intelligent Physical Agents (FIPA) performatives are used as communication acts between the control agents. First, the distributed control scheme is applied for voltage regulation in distribution feeders at which load tap changer (LTC) or step voltage regulators are installed at the begging of the feeder. In this case, the proposed control aims to modify the local estimation of the line drop compensation circuit via communication. Second, the control scheme is modified to take into consideration the case of multiple feeders having a substation LTC and unbalanced load diversity. To verify the effectiveness and robustness of the proposed control structure, a multiagent simulation model is proposed. The simulation results show that distributed control structure has the capability to mitigate the interference between DG units and utility voltage and reactive power control devices.
|
6 |
Assessment, Planning and Control of Voltage and Reactive Power in Active Distribution NetworksFarag, Hany Essa Zidan January 2013 (has links)
Driven by economic, technical and environmental factors, the energy sector is currently undergoing a profound paradigm shift towards a smarter grid setup. Increased intake of Distributed and Renewable Generation (DG) units is one of the Smart Grid (SG) pillars that will lead to numerous advantages among which lower electricity losses, increased reliability and reduced greenhouse gas emissions are the most salient.
The increase of DG units’ penetration will cause changes to the characteristics of distribution networks from being passive with unidirectional power flow towards Active Distribution Networks (ADNs) with multi-direction power flow. However, such changes in the current distribution systems structure and design will halt the seamless DG integration due to various technical issues that may arise. Voltage and reactive power control is one of the most significant issues that limit increasing DG penetration into distribution systems. On the other hand, the term microgrid has been created to be the building block of ADNs. A microgrid should be able to operate in two modes of operation, grid-connected or islanded. The successful implementation of the microgrid concept demands a proper definition of the regulations governing its integration in distribution systems. In order to define such regulations, an accurate evaluation of the benefits that microgrids will bring to customers and utilities is needed. Therefore, there is a need for careful consideration of microgrids in the assessment, operation, planning and design aspects of ADNs. Moreover, SG offers new digital technologies to be combined with the existing utility grids to substantially improve the overall efficiency and reliability of the network. Advanced network monitoring, two ways communication acts and intelligent control methods represent the main features of SG. Thus it is required to properly apply these features to facilitate a seamless integration of DG units in ADNs considering microgrids.
Motivated by voltage and reactive power control issues in ADNs, the concept of microgrids, and SG technologies, three consequent stages are presented in this thesis. In the first stage, the issues of voltage and reactive power control in traditional distribution systems are addressed and assessed in order to shed the light on the potential conflicts that are expected with high DG penetration. A simple, yet efficient and generic three phase power flow algorithm is developed to facilitate the assessment. The results show that utility voltage and reactive power control devices can no longer use conventional control techniques and there is a necessity for the evolution of voltage and reactive power control from traditional to smart control schemes. Furthermore, a probabilistic approach for assessing the impacts of voltage and reactive power constraints on the probability of successful operation of islanded microgrids and its impacts on the anticipated improvement in the system and customer reliability indices is developed. The assessment approach takes into account: 1) the stochastic nature of DG units and loads variability, 2) the special philosophy of operation for islanded microgrids, 3) the different configurations of microgrids in ADNs, and 4) the microgrids dynamic stability. The results show that voltage and reactive power aspects cannot be excluded from the assessment of islanded microgrids successful operation.
The assessment studies described in the first stage should be followed by new voltage and reactive power planning approaches that take into account the characteristics of ADNs and the successful operation of islanded microgrids. Feeders shunt capacitors are the main reactive power sources in distribution networks that are typically planned to be located or reallocated in order to provide voltage support and reduce the energy losses. Thus, in the second stage, the problem of capacitor planning in distribution network has been reformulated to consider microgrids in islanded mode. The genetic algorithm technique (GA) is utilized to solve the new formulation. The simulation results show that the new formulation for the problem of capacitor planning will facilitate a successful implementation of ADNs considering islanded microgrids.
In the third stage, the SG technologies are applied to construct a two ways communication-based distributed control that has the capability to provide proper voltage and reactive power control in ADNs. The proposed control scheme is defined according to the concept of multiagent technology, where each voltage and reactive power control device or DG unit is considered as a control agent. An intelligent Belief-Desire-Intention (BDI) model is proposed for the interior structure of each control agent. The Foundation for Intelligent Physical Agents (FIPA) performatives are used as communication acts between the control agents. First, the distributed control scheme is applied for voltage regulation in distribution feeders at which load tap changer (LTC) or step voltage regulators are installed at the begging of the feeder. In this case, the proposed control aims to modify the local estimation of the line drop compensation circuit via communication. Second, the control scheme is modified to take into consideration the case of multiple feeders having a substation LTC and unbalanced load diversity. To verify the effectiveness and robustness of the proposed control structure, a multiagent simulation model is proposed. The simulation results show that distributed control structure has the capability to mitigate the interference between DG units and utility voltage and reactive power control devices.
|
7 |
Gestion prévisionnelle des réseaux actifs de distribution - relaxation convexe sous incertitude / Operational Planning of Active Distribution Networks - Convex Relaxation under UncertaintySwaminathan, Bhargav Prasanna 22 September 2017 (has links)
Les réseaux électriques subissent deux changements majeurs : le taux croissant de générateurs d’énergie distribuée (GED) intermittents et la dérégulation du système électrique. Les réseaux de distribution et leurs gestionnaires (GRD) sont plus particulièrement touchés. La planification, construction et exploitation des réseaux de la plupart des GRD doivent évoluer face à ces change- ments. Les réseaux actifs de distribution et la gestion intelligente de associée est une solution potentielle. Les GRD pourront ainsi adopter de nouveaux rôles, interagir avec de nouveaux acteurs et proposer de nouveaux services. Ils pourront aussi utiliser la flexibilité de manière optimale au travers, entre autres, d’outils intelligents pour la gestion prévisionnelle de leurs réseaux de moyenne tension (HTA). Développer ces outils est un défi, car les réseaux de distribution ont des spécificités techniques. Ces spécificités sont la présence d’éléments discrets comme les régleurs en charge et la reconfiguration, les flexibilités exogènes, la non-linéarité des calculs de répartition de charge, et l’incertitude liée aux prévisions des GED intermittents. Dans cette thèse, une analyse économique des flexibilités permet d’établir une référence commune pour une utilisation rentable et sans biais dans la gestion prévisionnelle. Des modèles linéaires des flexibilités sont développés en utilisant des reformulations mathématiques exactes. Le calcul de répartition de charge est “convexifié” à travers des reformulations. L’optimalité globale des solutions obtenues, avec ce modèle d’optimisation exact et convexe de gestion prévisionnelle, sont ainsi garanties. Les tests sur deux réseaux permettent d’en valider la performance. L’incertitude des prévisions de GED peut pourtant remettre en cause les solutions obtenues. Afin de résoudre ce problème, trois formulations différentes pour traiter cette incertitude sont développées. Leurs performances sont testées et comparées à travers des simulations. Une analyse permet d’identifier les formulations les plus adaptées pour la gestion prévisionnelle sous incertitude. / Power systems are faced by the rising shares of distributed renewable energy sources (DRES) and the deregulation of the electricity system. Distribution networks and their operators (DSO) are particularly at the front-line. The passive operational practives of many DSOs today have to evolve to overcome these challenges. Active Distribution Networks (ADN), and Active Network Management (ANM) have been touted as a potential solution. In this context, DSOs will streamline investment and operational decisions, creating a cost-effective framework of operations. They will evolve and take up new roles and optimally use flexibility to perform, for example, short-term op- erational planning of their networks. However, the development of such methods poses particular challenges. They are related to the presence of discrete elements (OLTCs and reconfiguration), the use of exogenous (external) flexibilities in these networks, the non-linear nature of optimal power flow (OPF) calculations, and uncertainties present in forecasts. The work leading to this thesis deals with and overcomes these challenges. First, a short-term economic analysis is done to ascertain the utilisation costs of flexibilities. This provides a common reference for different flexibilities. Then, exact linear flexibility models are developed using mathematical reformulation techniques. The OPF equations in operational planning are then convexified using reformulation techniques as well. The mixed-integer convex optimisation model thus developed, called the novel OP formulation, is exact and can guarantee globally optimal solutions. Simulations on two test networks allow us to evaluate the performance of this formulation. The uncertainty in DRES forecasts is then handled via three different formulations developed in this thesis. The best performing formulations under uncertainty are determined via comparison framework developed to test their performance.
|
8 |
Proračun tokova snaga neuravnoteženih mreža sa energetskim resursima priključenim na mrežu preko uređaja energetske elektronike / Unbalanced power flow of large-scale networks with electronicaly interfaced energy resourcesVojnović Nikola 17 December 2018 (has links)
<p>U disertaciji je obrađen problem proračuna nesimetričnih tokova<br />snaga neuravnoteženih prenosnih i aktivnih distributivnih mreža<br />velikih dimenzija, naročito onih sa energetskim resursima<br />zasnovanim na uređajima energetske elektronike. Pri tome je dat dokaz<br />da tradicionalna klasifikacija čvorova nije dovoljna da se precizno<br />modeluju i rešavaju nesimetrični tokovi snaga navedenih mreža.<br />Zatim je predložena nova klasifikacija čvorova sa odgovarajućim<br />metodima tokova snaga. Time je omogućena vrlo precizna formulacija<br />i proračun modela nesimetričnih tokova snaga navedenih mreža. Ta<br />preciznost metoda tokova snaga je rezultat toga što su novom<br />klasifikacijom čvorova obuhvaćene sve praktično primenjene<br />upravljačke strategije tradicionalnih naizmeničnih mašina, a<br />naročito energetskih resursa koji su zasnovani na energetskoj<br />elektronici.</p> / <p>This thesis deals with power flow calculations of unbalanced large scale<br />transmission networks and active distributive networks, especially ones<br />with electronically interfaced resources. The proof that the traditional bus<br />classification is not sufficient for precise modeling and calculation of power<br />flow of these networks is given first. Then, a new bus classification and<br />corresponding very precise power flow model and calculation of<br />aforementioned networks are proposed. This precision of power flow<br />calculation is the result of encompassing of all control strategies of modern<br />energy resources by the new bus classification.</p>
|
Page generated in 0.0779 seconds