• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Linearly and Circularly Polarized Active Integrated Antenna

Khoshniat, Ali 01 May 2011 (has links)
This thesis work presents a new harmonic suppression technique for microstrip patch antennas. Harmonic suppression in active integrated antennas is known as an effective method to improve the efficiency of amplifiers in transmitter side. In the proposed design, the antenna works as the radiating element and, at the same time, as the tuning load for the amplifier circuit that is directly matched to the antenna. The proposed active antenna architecture is easy to fabricate and is symmetric, so it can be conveniently mass-produced and designed to have circular polarization, which is preferred in many applications such as satellite communications. The antenna simulations were performed using Ansoft High Frequency System Simulator (HFSS) and all amplifier design steps were simulated by Advanced Design System (ADS). The final prototypes of the linearly polarized active integrated antenna and the circularly polarized active integrated antenna were fabricated using a circuit board milling machine. The antenna radiation pattern was measured inside Utah State University's anechoic chamber and the results were satisfactory. Power measurements for the amplifiers' performance were carried out inside the chamber and calculated by using the Friis transmission equation. It is seen that a significant improvement in the efficiency is achieved compared to the reference antenna without harmonic suppression. Based on the success in the single element active antenna design, the thesis also presents a feasibility of applying the active integrated antenna in array configuration, in particular, in scanning array design to yield a low-profile, low-cost alternative to the parabolic antenna transmitter of satellite communication systems.

Page generated in 0.0895 seconds