• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analog Baseband Filters and Mixed Signal Circuits for Broadband Receiver Systems

Kulkarni, Raghavendra Laxman 2011 December 1900 (has links)
Data transfer rates of communication systems continue to rise fueled by aggressive demand for voice, video and Internet data. Device scaling enabled by modern lithography has paved way for System-on-Chip solutions integrating compute intensive digital signal processing. This trend coupled with demand for low power, battery-operated consumer devices offers extensive research opportunities in analog and mixed-signal designs that enable modern communication systems. The first part of the research deals with broadband wireless receivers. With an objective to gain insight, we quantify the impact of undesired out-band blockers on analog baseband in a broadband radio. We present a systematic evaluation of the dynamic range requirements at the baseband and A/D conversion boundary. A prototype UHF receiver designed using RFCMOS 0.18[mu]m technology to support this research integrates a hybrid continuous- and discrete-time analog baseband along with the RF front-end. The chip consumes 120mW from a 1.8V/2.5V dual supply and achieves a noise figure of 7.9dB, an IIP3 of -8dBm (+2dbm) at maximum gain (at 9dB RF attenuation). High linearity active RC filters are indispensable in wireless radios. A novel feed-forward OTA applicable to active RC filters in analog baseband is presented. Simulation results from the chip prototype designed in RFCMOS 0.18[mu]m technology show an improvement in the out-band linearity performance that translates to increased dynamic range in the presence of strong adjacent blockers. The second part of the research presents an adaptive clock-recovery system suitable for high-speed wireline transceivers. The main objective is to improve the jitter-tracking and jitter-filtering trade-off in serial link clock-recovery applications. A digital state-machine that enables the proposed mixed-signal adaptation solution to achieve this objective is presented. The advantages of the proposed mixed-signal solution operating at 10Gb/s are supported by experimental results from the prototype in RFCMOS 0.18[mu]m technology.
2

Design of a Direct-Modulation Transmitter with Self-Optimizing Feedback and a Highly Linear, Highly Reconfigurable, Continuously-Tunable Active-RC Baseband Filter for Multiple Standards

Amir Aslanzadeh Mamaghani, Hesam 2009 December 1900 (has links)
This work consists of two main parts: i) Design and implementation of a compact current-reusing 2.4GHz direct-modulation transmitter with on-chip automatic tuning; ii) Design and implementation of a novel highly-reconfigurable, continuously tunable, power-adjustable Active-RC filter for multiple standards. The design, analysis, and experimental verification of a proposed self-calibrating, current reused 2.4GHz, direct-modulation transmitter are introduced. A stacked arrangement of the power amplifier/voltage-controlled oscillator is presented along with a novel LC-tank-tuning algorithm with a simple, low-cost, on-chip implementation. To transmit maximum power, the tuning loop ensures the PA's resonant tank is centered around the operating frequency, and the loop requires no ADC, DSP, or external signal generator. This work also details the proposed tuning-loop algorithm and examines the frequency-dependent nonlinear power-detector. The system was implemented in TSMC 0.18[mu]m CMOS, occupies 0.7 mm² (TX) + 0.1 mm² (self tuning), and was measured in a QFN48 package on FR4 PCB. Automatically adjusting the tank-tuning bits within their tuning range results in >4dB increase in output power. With the self-tuning circuit active, the transmitter delivers a measured output power of > 0dBm to a 100-[omega] differential load, and the system consumes 22.9 mA from a 2.2-V supply. A biquad design methodology and a baseband low-pass filter is presented for wireless and wireline applications with reconfigurable frequency response, selectable order (1st/3rd/5th), continuously tunable cutoff frequency (1MHz-20MHz) and adjustable power consumption (3mW-7.5mW). A discrete capacitor array coarsely tunes the low-pass filter, and a novel Continuous Impedance Multiplier (CIM) then finely tunes the filter. Resistive/capacitive networks select between the Chebyshev and Inverse Chebyshev approximation types. Also, a new stability metric for biquads, Minimum Acceptable Phase Margin (MAPM), is presented and discussed in the context of filter compensation and passband ripple considerations. Experimental results yield an IIP3 of 31.3dBm, a THD of -40dB at 447mV[subscript pk, diff] input signal amplitude, and a DR of 71.4dB. The filters tunable range covers frequencies from 1MHz to 20MHz. In Inverse Chebyshev mode, the filter achieves a passband group delay variation less than ±2:5%. The design is fabricated in 0.13[mu]m CMOS, occupies 1.53mm², and operates from a 1-V supply.

Page generated in 0.0397 seconds