61 |
Quantifying the benefits of hydrologic simulation and the implementation of active control for optimizing performance of green stormwater infrastructureBahaya, Bernard January 2019 (has links)
No description available.
|
62 |
Semi-Active Control of Air-Suspended Tuned Mass DampersAlhujaili, Fahad Abdulrahman January 2012 (has links)
No description available.
|
63 |
Development of a Pseudo-uniform Structural Velocity Metric for Use in Active Structural Acoustic ControlFisher, Jeffery M. 30 August 2010 (has links) (PDF)
Active control of sound and vibration fields has become an strong area of research over the past few decades. In regards to the active control of acoustic radiation from vibration fields, known as active structural acoustic control (ASAC), there have been many different methods employed to understand structural and acoustic relationships and to control vibrations to limit the acoustic radiation. With active sound field control, sensors, usually microphones, need to be dispersed in the sound field, or an array of microphones must be placed directly in the sound field which, in many cases, uses up too much space for practical applications. To remedy this, objective functions have been transferred to the structure, sensing vibrations rather than pressures. A small, integrated array of structural sensors can be placed on the structure, reducing the system's overall footprint. Acoustic energy density has become a well established objective function, which produces a more global effect using only a local measurement. Another benefit of acoustic energy density lies in the breadth of sensor placement. While acoustic energy density has proven successful in active noise control (ANC), the quantity deals with pressures, not surface vibrations. The problem with ASAC is that an objective function with the robustness of acoustic energy density does not yet exist. This thesis focuses on a structural error sensing technique that mimics the properties of acoustic energy density control in the sound field. The presented structural quantity has been termed Vcomp, as it is a composite of multiple terms associated with velocity. Both analytical and experimental results with the control of this quantity are given for a rectangular plate. The control of Vcomp is compared to other objective function including squared velocity, volume velocity and acoustic energy density. In the analytical cases, the benefits include: control at higher structural modes, control largely independent of sensor location, and need for only a single point measurement of squared Vcomp with a compact sensor. The control at higher frequencies can be explained by the control of multiple acoustic radiation modes. Experimental results offer some validity to the analytical benefits but alternate sensing techniques need to be investigates to more fully validate these benefits.
|
64 |
Reduction Of Vortex-driven Oscillations In A Solid Rocket Motor Cold Flow Simulation Through Active ControlWard, Jami 01 January 2006 (has links)
Control of vortex-driven instabilities was demonstrated via a scaled-down, cold-flow simulation that modeled closed-end acoustics. When vortex shedding frequencies couple with the natural acoustic modes of a choked chamber, potentially damaging low-frequency instabilities may arise. Although passive solutions can be effective, an active control solution is preferable. An experiment was performed to demonstrate an active control scheme for the reduction of vortex-driven oscillations. A non-reacting experiment using a primary flow of air, where both the duct exit and inlet are choked, simulated the closed-end acoustics. Two plates, separated by 1.27 cm, produced the vortex shedding phenomenon at the chamber's first longitudinal mode. Two active control schemes, closed-loop and open-loop, were studied via a cold-flow simulation for validating the effects of reducing vortex shedding instabilities in the system. Actuation for both control schemes was produced by using a secondary injection method. The actuation system consisted of pulsing compressed air from a modifed, 2-stroke model airplane engine, controlled and powered by a DC motor. The use of open-loop only active control was not highly effective in reducing the amplitude of the first longitudinal acoustic mode, near 93 Hz, when the secondary injection was pulsed at the same modal frequency. This was due to the uncontrolled phasing of the secondary injection system. A Pulse Width Modulated (PWM) signal was added to the open-loop control scheme to correct for improper phasing of the secondary injection flow relative to the primary flow. This addition allowed the motor speed to be intermittently increased to a higher RPM before returning to the desired open-loop control state. This proved to be effective in reducing the pressure disturbance by approximately 46%. A closed-loop control scheme was then test for its effectiveness in controlling the phase of the secondary injection. Feedback of the system's state was determined by placing a dynamic pressure transducer near the chamber exit. Closed-loop active control, using the designed secondary injection system, was proven as an effective means of reducing the problematic instabilities. A 50% reduction in the FFT RMS amplitude was realized by utilizing a Proportional-Derivative controller to modify the phase of the secondary injection.
|
65 |
Structural Identification and Buffet Alleviation of Twin-Tailed Fighter AircraftEl-Badawy, Ayman Aly 12 April 2000 (has links)
We tackle the problem of identifying the structural dynamics of the twin tails of the F-15 fighter plane. The objective is to first investigate and identify the different possible attractors that coexist for the same operating parameters. Second is to develop a model that simulates the experimentally determined dynamics. Third is to suppress the high-amplitude vibrations of the tails due to either principal parametric or external excitations.
To understand the dynamical characteristics of the twin-tails, the model is excited parametrically. For the same excitation amplitude and frequency, five different responses are observed depending on the initial conditions. The coexisting five responses are the result of the nonlinearities. After the experimental identification of the system, we develop a model to capture the dynamics realized in the experiment.
We devise a nonlinear control law based on cubic velocity feedback to suppress the response of the model to a principal parametric excitation. The performance of the control law is studied by comparing the open- and closed-loop responses of the system. Furthermore, we conduct experiments to verify the theoretical analysis. The theoretical and experimental findings indicate that the control law not only leads to effective vibration suppression, but also to effective bifurcation control.
We investigate the design of a neural-network-based adaptive control system for active vibration suppression of the model when subjected to a parametric excitation. First, an emulator neural network was trained to represent the structure and thus used to predict the future responses of the model. Second, a neurocontroller is developed to determine the necessary control action. The computer-simulation studies show great promise for artificial neural networks to control the model vibrations caused by parametric excitations.
We investigate the use of four different control strategies to suppress high-amplitude responses of the F-15 fighter to a primary resonance excitation. The control strategies are linear velocity feedback, nonlinear velocity feedback, positive position feedback, and saturation-based control. For each case, we conduct bifurcation analyses for the open- and closed-loop responses of the system and investigate theoretically the performance of the different control strategies. We also calculate the instantaneous power requirements of each control law. The experimental results agree with the theoretical findings. / Ph. D.
|
66 |
Nonlinear Control of Plate VibrationsAshour, Osama Naim 06 March 2001 (has links)
A nonlinear active vibration absorber to control the vibrations of plates is investigated. The absorber is based on the saturation phenomenon associated with dynamical systems with quadratic nonlinearities and a two-to-one internal resonance. The technique is implemented by coupling a second-order controller with the plate's response through a sensor and an actuator. Energy is exchanged between the primary structure and the controller and, near resonance, the plate's response saturates to a small value.
Numerical as well as experimental results are presented for a cantilever rectangular plate. For numerical studies, finite-element methods as well as modal analysis are implemented. The commercially available software ABAQUS is used in the finite-element analysis together with a user-provided subroutine to model the controller. For the experimental studies, the plate is excited using a dynamic shaker. Strain gages are used as sensors, while piezoelectric ceramic patches are used as actuators. The control technique is implemented using a dSPACE digital signal processing board and a modeling software (SIMULINK). Both numerical and experimental results show that the control strategy is very efficient.
A numerical study is conducted to optimize the location of the actuators on the structure to maximize its controllability. In this regard, the control gain is maximized for the PZT actuators. Furthermore, a more general method is introduced that is based on a global measure of controllability for linear systems.
Finally, the control strategy is made adaptive by incorporating an efficient frequency-measurement technique. This is validated by successfully testing the control strategy for a non-conventional problem, where nonlinear effects hinder the application of the non-adaptive controller. / Ph. D.
|
67 |
Techniques for Controlling Structural VibrationsOueini, Shafic Sami 24 April 1999 (has links)
We tackle the problem of suppressing high-amplitude vibrations of cantilever beams when subjected to either primary external or principal parametric resonances. Guided by results of previous investigations into the nonlinear dynamics of single- and multi-degree-of-freedom structures, we design mechatronic systems of sensors, actuators, and electronic devices and implement nonlinear active feedback control.
In the case of external excitation, we devise two vibration absorbers based on either quadratic or cubic feedback. We conduct theoretical analyses and demonstrate that when a two-to-one (one-to-one) internal resonance condition is imposed between the plant and the quadratic (cubic) absorber, there exists a saturation phenomenon. When the plant is forced near its resonant frequency and the forcing amplitude exceeds a certain small threshold, the nonlinear coupling creates an energy-transfer mechanism that limits (saturates) the response of the plant.
Our theoretical studies reveal that the cubic absorber creates regimes of high-amplitude quasiperiodic and chaotic responses, thereby limiting its utility. However, we show that superior results can be achieved when the natural frequency of the quadratic absorber is set equal to one-half the excitation frequency. Consequently, we apply the quadratic technique through a variety of linear and nonlinear actuators, sensors, and electronic devices.
We design and build second-order analog circuits that emulate the quadratic absorber. Using a DC motor, piezoelectric ceramics, and Terfenol-D struts as actuators and potentiometers, strain gages, and accelerometers as sensors, we demonstrate successful single- and multi-mode vibration control.
In order to realize a more versatile implementation of the control strategy, we resort to a digital signal processing (DSP) board. We compose a code in C and design a digital absorber by developing algorithms that, in addition to replacing the analog circuit, automatically detect the amplitude and frequency of oscillation of the plant and fine-tune the absorber parameters.
We take advantage of the digital realization, implement a linear absorber, and compare the performance of the quadratic absorber with that of its linear counterpart.
In the case of parametric excitation, we investigate two techniques. First, we explore application of the quadratic absorber. We prove theoretically and demonstrate experimentally that this control scheme is not reliable. Then, we propose an alternate approach. We devise a control law based on cubic velocity feedback. We conduct theoretical and experimental investigations and show that the latter strategy leads to effective vibration suppression and bifurcation control. / Ph. D.
|
68 |
EXPERIMENTAL CHARACTERIZATION AND ACTIVE CONTROL SIMULATION OF THE ACOUSTIC NOISE RESPONSE OF A HIGH-FIELD, HIGH RATE MRI SCANNERMORE, SHASHIKANT R. January 2004 (has links)
No description available.
|
69 |
Actively Controllable Hydrodynamic Journal Bearing Design Using Magnetorheological Fluidsmoles, nathaniel caleb January 2015 (has links)
No description available.
|
70 |
Active Flow Control Schemes for Bluff Body Drag ReductionWhiteman, Jacob T. 08 June 2016 (has links)
No description available.
|
Page generated in 0.0644 seconds