• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of Linear, Nonlinear, Hysteretic, and Probabilistic MR Damper Models

Richards, Russell Joseph 19 September 2007 (has links)
Magnetorheolgical (MR) fluid dampers have the capability of changing their effective damping force depending on the current input to the damper. A number of factors in the construction of the damper, as well as the properties of the fluid and the electromagnet, create a dynamic response of the damper that cannot be fully described with a static model dependent on current and velocity. This study will compare different techniques for modeling the force response of the damper in the current-velocity space. To ensure that all the dynamic response characteristics of the damper are captured in data collection, random input signals were used for velocity and current inputs. By providing a normally distributed random signal for velocity to a shock dynamometer and a uniformly distributed random signal for current to a Lord rheonetic seat damper, the force response could be measured. The data from this test is analyzed as a two dimensional signal, a three dimensional force plot in the current velocity plane, and as a probability density function. Four models are created to fit the data. The first is a linear model dependent solely on current. The second is a nonlinear model dependent on both current and velocity. The third model takes the nonlinear model and includes a filter that affects the force response of the model with time. Each of these three approaches are compared based on the total error in the force response and the models? ability to match the PDF of the data. Finally, a fourth model is created for the damper that improves the nonlinear model by making one parameter a probability parameter defined by a PDF calculated from the data. However, because it is a probability model, the error cannot be found through comparison to the data. / Master of Science
2

Force Feedback Control of a Semi-Active Shock Absorber / Kraftåterkopplad reglering av semiaktiv stötdämpare

Svennerbrandt, Per January 2014 (has links)
Semi-active suspension systems promise to significantly reduce the necessary trade-off be-tween handling and passenger comfort present in conventional suspension systems by enabling active chassis and wheel control. Öhlins Racing AB have developed a semi-active suspension technology known as CES, Continuously controlled Electronic Suspension, based on solenoid control valves which are integrated into specially designed hydraulic dampers, and are currently developing control and estimation systems which will enable their application in advanced motorcycle suspensions. In these systems an important aspect is being able to accurately control the forces produced. Öhlins’ current system uses an open loop control strategy in which currents sent through the solenoid valves, to achieve the requested damping force under the prevailing circumstances, is calculated using experimentally derived static lookup tables. In this thesis a new closed loop control system, based on the direct measurement of the damper force, is developed and its performance is evaluated in comparison to the old one’s. Sufficient understanding of the system requires extensive modeling and therefore two different models have been developed; a simpler one used for model based control design and a more extensive, high fidelity model used for high accuracy simulations. The developed simulation model is the first of its kind that is able to capture the studied systems behavior with satisfactory accuracy, as demonstrated against real dynamometer measurements. The valves and damper behave in a highly non linear manner and the final controller design uses a combination of exact linearization, non linear state estimation, dynamical inversion and classical control theory. Simulation results indicate that the new controller reduces the root mean square force tracking error to about 63% of that of the existing controller in the evaluation scenarios used. Cascaded within the system is also closed loop current controllers. A developed model based controller is shown to reduce the rise time to less than 30% of that of the existing PID-controllers, reduce the overshoot and provide online estimates of the winding series resistance, providing the basis for future solenoid diagnosis and temperature tracking systems.
3

Sistemas dinâmicos com amortecedores ativos controlados por atuadores piezelétricos

Galavotti, Thiago Vianna [UNESP] 26 May 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:13Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-05-26Bitstream added on 2014-06-13T19:55:33Z : No. of bitstreams: 1 galavotti_tv_me_ilha.pdf: 4073080 bytes, checksum: 0605ef5edb68c7bc2b71f8c976c0fe09 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Nos últimos anos, as indústrias têm mostrado bastante interesse no desenvolvimento de novas técnicas para o controle de vibrações. O objetivo principal é atribuir valores aceitáveis das amplitudes de vibrações nos sistemas, garantindo um bom funcionamento dos mesmos e evitando falhas que provoquem paradas abruptas, mostrando-se uma área científica muito importante e que aproxima vários campos da engenharia moderna. Atualmente essa tecnologia é crescente e grande investimento tem sido aplicado no seu desenvolvimento. Este trabalho apresenta resultados obtidos para técnicas ativas e semi-ativas de controle de vibrações, considerando que as modificações estruturais são provenientes da alteração da rigidez e amortecimento. Utiliza-se para essa análise, Amortecedores Ativos Controlados por Atuadores Piezelétricos, denominados em inglês por Piezoelectric Friction Damper (PFD). A aplicação da metodologia é realizada em máquinas rotativas modeladas pelo Método dos Elementos Finitos e em um protótipo projetado e construído em laboratório. Os resultados procuram atenuar os níveis de vibrações e demonstram a viabilidade da aplicação de PFDs em estruturas. / Nowadays industries have shown great interest in developing new techniques for vibration control. The target is getting acceptable values of the amplitudes of vibrations in systems, ensuring proper working order avoiding failures. This is a scientific area of very important and approach fields of modern engineering. Currently this technology is growing and large investments has been applied in its development. This paper presents results obtained for active and semi-active techniques vibration control, where the structural changes are from the modification of stiffness and damping. It is used for this analysis a system known by Piezoelectric Friction Damper (PFD). The methodology was applied in rotating machines modeled by finite element method and in a prototype designed and built in the laboratory. The results try to mitigate the vibration levels and demonstrate the feasibility of applying PFDs in rotating machine.

Page generated in 0.0657 seconds