1 |
Multimodal interactive structured predictionAlabau Gonzalvo, Vicente 27 January 2014 (has links)
This thesis presents scientific contributions to the field of multimodal interac-
tive structured prediction (MISP). The aim of MISP is to reduce the human
effort required to supervise an automatic output, in an efficient and ergonomic
way. Hence, this thesis focuses on the two aspects of MISP systems. The first
aspect, which refers to the interactive part of MISP, is the study of strate-
gies for efficient human¿computer collaboration to produce error-free outputs.
Multimodality, the second aspect, deals with other more ergonomic modalities
of communication with the computer rather than keyboard and mouse.
To begin with, in sequential interaction the user is assumed to supervise the
output from left-to-right so that errors are corrected in sequential order. We
study the problem under the decision theory framework and define an optimum
decoding algorithm. The optimum algorithm is compared to the usually ap-
plied, standard approach. Experimental results on several tasks suggests that
the optimum algorithm is slightly better than the standard algorithm.
In contrast to sequential interaction, in active interaction it is the system that
decides what should be given to the user for supervision. On the one hand, user
supervision can be reduced if the user is required to supervise only the outputs
that the system expects to be erroneous. In this respect, we define a strategy
that retrieves first the outputs with highest expected error first. Moreover, we
prove that this strategy is optimum under certain conditions, which is validated
by experimental results. On the other hand, if the goal is to reduce the number
of corrections, active interaction works by selecting elements, one by one, e.g.,
words of a given output to be supervised by the user. For this case, several
strategies are compared. Unlike the previous case, the strategy that performs
better is to choose the element with highest confidence, which coincides with
the findings of the optimum algorithm for sequential interaction. However, this
also suggests that minimizing effort and supervision are contradictory goals.
With respect to the multimodality aspect, this thesis delves into techniques to
make multimodal systems more robust. To achieve that, multimodal systems
are improved by providing contextual information of the application at hand.
First, we study how to integrate e-pen interaction in a machine translation
task. We contribute to the state-of-the-art by leveraging the information from the source sentence. Several strategies are compared basically grouped into two
approaches: inspired by word-based translation models and n-grams generated
from a phrase-based system. The experiments show that the former outper-
forms the latter for this task. Furthermore, the results present remarkable
improvements against not using contextual information. Second, similar ex-
periments are conducted on a speech-enabled interface for interactive machine
translation. The improvements over the baseline are also noticeable. How-
ever, in this case, phrase-based models perform much better than word-based
models. We attribute that to the fact that acoustic models are poorer estima-
tions than morphologic models and, thus, they benefit more from the language
model. Finally, similar techniques are proposed for dictation of handwritten
documents. The results show that speech and handwritten recognition can be
combined in an effective way.
Finally, an evaluation with real users is carried out to compare an interactive
machine translation prototype with a post-editing prototype. The results of
the study reveal that users are very sensitive to the usability aspects of the
user interface. Therefore, usability is a crucial aspect to consider in an human
evaluation that can hinder the real benefits of the technology being evaluated.
Hopefully, once usability problems are fixed, the evaluation indicates that users
are more favorable to work with the interactive machine translation system than
to the post-editing system. / Alabau Gonzalvo, V. (2014). Multimodal interactive structured prediction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35135 / Premios Extraordinarios de tesis doctorales
|
2 |
On the effective deployment of current machine translation technologyGonzález Rubio, Jesús 03 June 2014 (has links)
Machine translation is a fundamental technology that is gaining more importance
each day in our multilingual society. Companies and particulars are
turning their attention to machine translation since it dramatically cuts down
their expenses on translation and interpreting. However, the output of current
machine translation systems is still far from the quality of translations generated
by human experts. The overall goal of this thesis is to narrow down
this quality gap by developing new methodologies and tools that improve the
broader and more efficient deployment of machine translation technology.
We start by proposing a new technique to improve the quality of the
translations generated by fully-automatic machine translation systems. The
key insight of our approach is that different translation systems, implementing
different approaches and technologies, can exhibit different strengths and
limitations. Therefore, a proper combination of the outputs of such different
systems has the potential to produce translations of improved quality.
We present minimum Bayes¿ risk system combination, an automatic approach
that detects the best parts of the candidate translations and combines them
to generate a consensus translation that is optimal with respect to a particular
performance metric. We thoroughly describe the formalization of our
approach as a weighted ensemble of probability distributions and provide efficient
algorithms to obtain the optimal consensus translation according to the
widespread BLEU score. Empirical results show that the proposed approach
is indeed able to generate statistically better translations than the provided
candidates. Compared to other state-of-the-art systems combination methods,
our approach reports similar performance not requiring any additional data
but the candidate translations.
Then, we focus our attention on how to improve the utility of automatic
translations for the end-user of the system. Since automatic translations are
not perfect, a desirable feature of machine translation systems is the ability
to predict at run-time the quality of the generated translations. Quality estimation
is usually addressed as a regression problem where a quality score
is predicted from a set of features that represents the translation. However, although the concept of translation quality is intuitively clear, there is no
consensus on which are the features that actually account for it. As a consequence,
quality estimation systems for machine translation have to utilize
a large number of weak features to predict translation quality. This involves
several learning problems related to feature collinearity and ambiguity, and
due to the ¿curse¿ of dimensionality. We address these challenges by adopting
a two-step training methodology. First, a dimensionality reduction method
computes, from the original features, the reduced set of features that better
explains translation quality. Then, a prediction model is built from this
reduced set to finally predict the quality score. We study various reduction
methods previously used in the literature and propose two new ones based on
statistical multivariate analysis techniques. More specifically, the proposed dimensionality
reduction methods are based on partial least squares regression.
The results of a thorough experimentation show that the quality estimation
systems estimated following the proposed two-step methodology obtain better
prediction accuracy that systems estimated using all the original features.
Moreover, one of the proposed dimensionality reduction methods obtained the
best prediction accuracy with only a fraction of the original features. This
feature reduction ratio is important because it implies a dramatic reduction
of the operating times of the quality estimation system.
An alternative use of current machine translation systems is to embed them
within an interactive editing environment where the system and a human expert
collaborate to generate error-free translations. This interactive machine
translation approach have shown to reduce supervision effort of the user in
comparison to the conventional decoupled post-edition approach. However,
interactive machine translation considers the translation system as a passive
agent in the interaction process. In other words, the system only suggests translations
to the user, who then makes the necessary supervision decisions. As
a result, the user is bound to exhaustively supervise every suggested translation.
This passive approach ensures error-free translations but it also demands
a large amount of supervision effort from the user.
Finally, we study different techniques to improve the productivity of current
interactive machine translation systems. Specifically, we focus on the development
of alternative approaches where the system becomes an active agent
in the interaction process. We propose two different active approaches. On the
one hand, we describe an active interaction approach where the system informs
the user about the reliability of the suggested translations. The hope is that
this information may help the user to locate translation errors thus improving
the overall translation productivity. We propose different scores to measure translation reliability at the word and sentence levels and study the influence
of such information in the productivity of an interactive machine translation
system. Empirical results show that the proposed active interaction protocol
is able to achieve a large reduction in supervision effort while still generating
translations of very high quality. On the other hand, we study an active learning
framework for interactive machine translation. In this case, the system is
not only able to inform the user of which suggested translations should be
supervised, but it is also able to learn from the user-supervised translations to
improve its future suggestions. We develop a value-of-information criterion to
select which automatic translations undergo user supervision. However, given
its high computational complexity, in practice we study different selection
strategies that approximate this optimal criterion. Results of a large scale experimentation
show that the proposed active learning framework is able to
obtain better compromises between the quality of the generated translations
and the human effort required to obtain them. Moreover, in comparison to
a conventional interactive machine translation system, our proposal obtained
translations of twice the quality with the same supervision effort. / González Rubio, J. (2014). On the effective deployment of current machine translation technology [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37888
|
Page generated in 0.1191 seconds