Spelling suggestions: "subject:"interactive machine translation"" "subject:"lnteractive machine translation""
1 |
Black-box interactive translation predictionTorregrosa Rivero, Daniel 25 May 2018 (has links)
En un mundo globalizado como el actual en el que, además, muchas sociedades son inherentemente multilingües, la traducción e interpretación entre diversas lenguas requiere de un esfuerzo notable debido a su volumen. Diversas tecnologías de asistencia existen para facilitar la realización de estas tareas de traducción, entre las que se encuentra la traducción automática interactiva (TAI), una modalidad en la que el traductor va escribiendo la traducción y el sistema ofrece sugerencias que predicen las próximas palabras que va a teclear. En el estado de la cuestión, las aproximaciones a la TAI siguen una aproximación de caja de cristal: están firmemente acopladas a un sistema de traducción automática (muchas veces estadístico) que utilizan para generar las sugerencias, por lo que tienen las mismas limitaciones que el sistema de traducción automática subyacente. Esta tesis desarrolla una nueva aproximación de caja negra, donde cualquier recurso bilingüe (no solo sistemas de traducción automática, sino también otros recursos como memorias de traducción, diccionarios, glosarios, etc.) puede ser utilizado para generar las sugerencias.
|
2 |
Multimodal interactive structured predictionAlabau Gonzalvo, Vicente 27 January 2014 (has links)
This thesis presents scientific contributions to the field of multimodal interac-
tive structured prediction (MISP). The aim of MISP is to reduce the human
effort required to supervise an automatic output, in an efficient and ergonomic
way. Hence, this thesis focuses on the two aspects of MISP systems. The first
aspect, which refers to the interactive part of MISP, is the study of strate-
gies for efficient human¿computer collaboration to produce error-free outputs.
Multimodality, the second aspect, deals with other more ergonomic modalities
of communication with the computer rather than keyboard and mouse.
To begin with, in sequential interaction the user is assumed to supervise the
output from left-to-right so that errors are corrected in sequential order. We
study the problem under the decision theory framework and define an optimum
decoding algorithm. The optimum algorithm is compared to the usually ap-
plied, standard approach. Experimental results on several tasks suggests that
the optimum algorithm is slightly better than the standard algorithm.
In contrast to sequential interaction, in active interaction it is the system that
decides what should be given to the user for supervision. On the one hand, user
supervision can be reduced if the user is required to supervise only the outputs
that the system expects to be erroneous. In this respect, we define a strategy
that retrieves first the outputs with highest expected error first. Moreover, we
prove that this strategy is optimum under certain conditions, which is validated
by experimental results. On the other hand, if the goal is to reduce the number
of corrections, active interaction works by selecting elements, one by one, e.g.,
words of a given output to be supervised by the user. For this case, several
strategies are compared. Unlike the previous case, the strategy that performs
better is to choose the element with highest confidence, which coincides with
the findings of the optimum algorithm for sequential interaction. However, this
also suggests that minimizing effort and supervision are contradictory goals.
With respect to the multimodality aspect, this thesis delves into techniques to
make multimodal systems more robust. To achieve that, multimodal systems
are improved by providing contextual information of the application at hand.
First, we study how to integrate e-pen interaction in a machine translation
task. We contribute to the state-of-the-art by leveraging the information from the source sentence. Several strategies are compared basically grouped into two
approaches: inspired by word-based translation models and n-grams generated
from a phrase-based system. The experiments show that the former outper-
forms the latter for this task. Furthermore, the results present remarkable
improvements against not using contextual information. Second, similar ex-
periments are conducted on a speech-enabled interface for interactive machine
translation. The improvements over the baseline are also noticeable. How-
ever, in this case, phrase-based models perform much better than word-based
models. We attribute that to the fact that acoustic models are poorer estima-
tions than morphologic models and, thus, they benefit more from the language
model. Finally, similar techniques are proposed for dictation of handwritten
documents. The results show that speech and handwritten recognition can be
combined in an effective way.
Finally, an evaluation with real users is carried out to compare an interactive
machine translation prototype with a post-editing prototype. The results of
the study reveal that users are very sensitive to the usability aspects of the
user interface. Therefore, usability is a crucial aspect to consider in an human
evaluation that can hinder the real benefits of the technology being evaluated.
Hopefully, once usability problems are fixed, the evaluation indicates that users
are more favorable to work with the interactive machine translation system than
to the post-editing system. / Alabau Gonzalvo, V. (2014). Multimodal interactive structured prediction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35135 / Premios Extraordinarios de tesis doctorales
|
3 |
On the effective deployment of current machine translation technologyGonzález Rubio, Jesús 03 June 2014 (has links)
Machine translation is a fundamental technology that is gaining more importance
each day in our multilingual society. Companies and particulars are
turning their attention to machine translation since it dramatically cuts down
their expenses on translation and interpreting. However, the output of current
machine translation systems is still far from the quality of translations generated
by human experts. The overall goal of this thesis is to narrow down
this quality gap by developing new methodologies and tools that improve the
broader and more efficient deployment of machine translation technology.
We start by proposing a new technique to improve the quality of the
translations generated by fully-automatic machine translation systems. The
key insight of our approach is that different translation systems, implementing
different approaches and technologies, can exhibit different strengths and
limitations. Therefore, a proper combination of the outputs of such different
systems has the potential to produce translations of improved quality.
We present minimum Bayes¿ risk system combination, an automatic approach
that detects the best parts of the candidate translations and combines them
to generate a consensus translation that is optimal with respect to a particular
performance metric. We thoroughly describe the formalization of our
approach as a weighted ensemble of probability distributions and provide efficient
algorithms to obtain the optimal consensus translation according to the
widespread BLEU score. Empirical results show that the proposed approach
is indeed able to generate statistically better translations than the provided
candidates. Compared to other state-of-the-art systems combination methods,
our approach reports similar performance not requiring any additional data
but the candidate translations.
Then, we focus our attention on how to improve the utility of automatic
translations for the end-user of the system. Since automatic translations are
not perfect, a desirable feature of machine translation systems is the ability
to predict at run-time the quality of the generated translations. Quality estimation
is usually addressed as a regression problem where a quality score
is predicted from a set of features that represents the translation. However, although the concept of translation quality is intuitively clear, there is no
consensus on which are the features that actually account for it. As a consequence,
quality estimation systems for machine translation have to utilize
a large number of weak features to predict translation quality. This involves
several learning problems related to feature collinearity and ambiguity, and
due to the ¿curse¿ of dimensionality. We address these challenges by adopting
a two-step training methodology. First, a dimensionality reduction method
computes, from the original features, the reduced set of features that better
explains translation quality. Then, a prediction model is built from this
reduced set to finally predict the quality score. We study various reduction
methods previously used in the literature and propose two new ones based on
statistical multivariate analysis techniques. More specifically, the proposed dimensionality
reduction methods are based on partial least squares regression.
The results of a thorough experimentation show that the quality estimation
systems estimated following the proposed two-step methodology obtain better
prediction accuracy that systems estimated using all the original features.
Moreover, one of the proposed dimensionality reduction methods obtained the
best prediction accuracy with only a fraction of the original features. This
feature reduction ratio is important because it implies a dramatic reduction
of the operating times of the quality estimation system.
An alternative use of current machine translation systems is to embed them
within an interactive editing environment where the system and a human expert
collaborate to generate error-free translations. This interactive machine
translation approach have shown to reduce supervision effort of the user in
comparison to the conventional decoupled post-edition approach. However,
interactive machine translation considers the translation system as a passive
agent in the interaction process. In other words, the system only suggests translations
to the user, who then makes the necessary supervision decisions. As
a result, the user is bound to exhaustively supervise every suggested translation.
This passive approach ensures error-free translations but it also demands
a large amount of supervision effort from the user.
Finally, we study different techniques to improve the productivity of current
interactive machine translation systems. Specifically, we focus on the development
of alternative approaches where the system becomes an active agent
in the interaction process. We propose two different active approaches. On the
one hand, we describe an active interaction approach where the system informs
the user about the reliability of the suggested translations. The hope is that
this information may help the user to locate translation errors thus improving
the overall translation productivity. We propose different scores to measure translation reliability at the word and sentence levels and study the influence
of such information in the productivity of an interactive machine translation
system. Empirical results show that the proposed active interaction protocol
is able to achieve a large reduction in supervision effort while still generating
translations of very high quality. On the other hand, we study an active learning
framework for interactive machine translation. In this case, the system is
not only able to inform the user of which suggested translations should be
supervised, but it is also able to learn from the user-supervised translations to
improve its future suggestions. We develop a value-of-information criterion to
select which automatic translations undergo user supervision. However, given
its high computational complexity, in practice we study different selection
strategies that approximate this optimal criterion. Results of a large scale experimentation
show that the proposed active learning framework is able to
obtain better compromises between the quality of the generated translations
and the human effort required to obtain them. Moreover, in comparison to
a conventional interactive machine translation system, our proposal obtained
translations of twice the quality with the same supervision effort. / González Rubio, J. (2014). On the effective deployment of current machine translation technology [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37888
|
4 |
Some Contributions to Interactive Machine Translation and to the Applications of Machine Translation for Historical DocumentsDomingo Ballester, Miguel 28 February 2022 (has links)
[ES] Los documentos históricos son una parte importante de nuestra herencia cultural. Sin embargo, debido a la barrera idiomática inherente en el lenguaje humano y a las propiedades lingüísticas de estos documentos, su accesibilidad está principalmente restringida a los académicos. Por un lado, el lenguaje humano evoluciona con el paso del tiempo. Por otro lado, las convenciones ortográficas no se crearon hasta hace poco y, por tanto, la ortografía cambia según el período temporal y el autor. Por estas razones, el trabajo de los académicos es necesario para que los no expertos puedan obtener una comprensión básica de un documento determinado.
En esta tesis abordamos dos tareas relacionadas con el procesamiento de documentos históricos. La primera tarea es la modernización del lenguaje que, a fin de hacer que los documentos históricos estén más accesibles para los no expertos, tiene como objetivo reescribir un documento utilizando la versión moderna del idioma original del documento. La segunda tarea es la normalización ortográfica. Las propiedades lingüísticas de los documentos históricos mencionadas con anterioridad suponen un desafío adicional para la aplicación efectiva del procesado del lenguaje natural en estos documentos. Por lo tanto, esta tarea tiene como objetivo adaptar la ortografía de un documento a los estándares modernos a fin de lograr una consistencia ortográfica.
Ambas tareas las afrontamos desde una perspectiva de traducción automática, considerando el idioma original de un documento como el idioma fuente, y su homólogo moderno/normalizado como el idioma objetivo. Proponemos varios enfoques basados en la traducción automática estadística y neuronal, y llevamos a cabo una amplia experimentación que ratifica el potencial de nuestras contribuciones -en donde los enfoques estadísticos arrojan resultados iguales o mejores que los enfoques neuronales para la mayoría de los casos-. En el caso de la tarea de modernización del lenguaje, esta experimentación incluye una evaluación humana realizada con la ayuda de académicos y un estudio con usuarios que verifica que nuestras propuestas pueden ayudar a los no expertos a obtener una comprensión básica de un documento histórico sin la intervención de un académico.
Como ocurre con cualquier problema de traducción automática, nuestras aplicaciones no están libres de errores. Por lo tanto, para obtener modernizaciones/normalizaciones perfectas, un académico debe supervisar y corregir los errores. Este es un procedimiento común en la industria de la traducción. La metodología de traducción automática interactiva tiene como objetivo reducir el esfuerzo necesario para obtener traducciones de alta calidad uniendo al agente humano y al sistema de traducción en un proceso de corrección cooperativo. Sin embargo,la mayoría de los protocolos interactivos siguen una estrategia de izquierda a derecha. En esta tesis desarrollamos un nuevo protocolo interactivo que rompe con esta barrera de izquierda a derecha. Hemos evaluado este nuevo protocolo en un entorno de traducción automática, obteniendo grandes reducciones del esfuerzo humano. Finalmente, dado que este marco interactivo es de aplicación general a cualquier problema de traducción, lo hemos aplicado -nuestro nuevo protocolo junto con uno de los protocolos clásicos de izquierda a derecha- a la modernización del lenguaje y a la normalización ortográfica. Al igual que en traducción automática, el marco interactivo logra disminuir el esfuerzo requerido para corregir los resultados de un sistema automático. / [CA] Els documents històrics són una part important de la nostra herència cultural. No obstant això, degut a la barrera idiomàtica inherent en el llenguatge humà i a les propietats lingüístiques d'aquests documents, la seua accessibilitat està principalment restringida als acadèmics. D'una banda, el llenguatge humà evoluciona amb el pas del temps. D'altra banda, les convencions ortogràfiques no es van crear fins fa poc i, per tant, l'ortografia canvia segons el període temporal i l'autor. Per aquestes raons, el treball dels acadèmics és necessari perquè els no experts puguen obtindre una comprensió bàsica d'un document determinat.
En aquesta tesi abordem dues tasques relacionades amb el processament de documents històrics. La primera tasca és la modernització del llenguatge que, a fi de fer que els documents històrics estiguen més accessibles per als no experts, té per objectiu reescriure un document utilitzant la versió moderna de l'idioma original del document. La segona tasca és la normalització ortogràfica. Les propietats lingüístiques dels documents històrics mencionades amb anterioritat suposen un desafiament addicional per a l'aplicació efectiva del processat del llenguatge natural en aquests documents. Per tant, aquesta tasca té per objectiu adaptar l'ortografia d'un document als estàndards moderns a fi d'aconseguir una consistència ortogràfica.
Dues tasques les afrontem des d'una perspectiva de traducció automàtica, considerant l'idioma original d'un document com a l'idioma font, i el seu homòleg modern/normalitzat com a l'idioma objectiu. Proposem diversos enfocaments basats en la traducció automàtica estadística i neuronal, i portem a terme una àmplia experimentació que ratifica el potencial de les nostres contribucions -on els enfocaments estadístics obtenen resultats iguals o millors que els enfocaments neuronals per a la majoria dels casos-. En el cas de la tasca de modernització del llenguatge, aquesta experimentació inclou una avaluació humana realitzada amb l'ajuda d'acadèmics i un estudi amb usuaris que verifica que les nostres propostes poden ajudar als no experts a obtindre una comprensió bàsica d'un document històric sense la intervenció d'un acadèmic.
Com ocurreix amb qualsevol problema de traducció automàtica, les nostres aplicacions no estan lliures d'errades. Per tant, per obtindre modernitzacions/normalitzacions perfectes, un acadèmic ha de supervisar i corregir les errades. Aquest és un procediment comú en la indústria de la traducció. La metodologia de traducció automàtica interactiva té per objectiu reduir l'esforç necessari per obtindre traduccions d'alta qualitat unint a l'agent humà i al sistema de traducció en un procés de correcció cooperatiu. Tot i això, la majoria dels protocols interactius segueixen una estratègia d'esquerra a dreta. En aquesta tesi desenvolupem un nou protocol interactiu que trenca amb aquesta barrera d'esquerra a dreta. Hem avaluat aquest nou protocol en un entorn de traducció automàtica, obtenint grans reduccions de l'esforç humà. Finalment, atès que aquest marc interactiu és d'aplicació general a qualsevol problema de traducció, l'hem aplicat -el nostre nou protocol junt amb un dels protocols clàssics d'esquerra a dreta- a la modernització del llenguatge i a la normalitzaciò ortogràfica. De la mateixa manera que en traducció automàtica, el marc interactiu aconsegueix disminuir l'esforç requerit per corregir els resultats
d'un sistema automàtic. / [EN] Historical documents are an important part of our cultural heritage. However,due to the language barrier inherent in human language and the linguistic properties of these documents, their accessibility is mostly limited to scholars. On the one hand, human language evolves with the passage of time. On the other hand, spelling conventions were not created until recently and, thus, orthography changes depending on the time period and author. For these reasons, the work of scholars is needed for non-experts to gain a basic understanding of a given document.
In this thesis, we tackle two tasks related with the processing of historical documents. The first task is language modernization which, in order to make historical documents more accessible to non-experts, aims to rewrite a document using the modern version of the document's original language. The second task is spelling normalization. The aforementioned linguistic properties of historical documents suppose an additional challenge for the effective natural language processing of these documents. Thus, this task aims to adapt a document's spelling to modern standards in order to achieve an orthography consistency.
We affront both task from a machine translation perspective, considering a document's original language as the source language, and its modern/normalized counterpart as the target language. We propose several approaches based on statistical and neural machine translation, and carry out a wide experimentation that shows the potential of our contributions¿with the statistical approaches yielding equal or better results than the neural approaches in most of the cases. For the language modernization task, this experimentation includes a human evaluation conducted with the help of scholars and a user study that verifies that our proposals are able to help non-experts to gain a basic understanding of a historical document without the intervention of a scholar.
As with any machine translation problem, our applications are not error-free. Thus, to obtain perfect modernizations/normalizations, a scholar needs to supervise and correct the errors. This is a common procedure in the translation industry. The interactive machine translation framework aims to reduce the effort needed for obtaining high quality translations by embedding the human agent and the translation system into a cooperative correction process. However, most interactive protocols follow a left-to-right strategy. In this thesis, we developed a new interactive protocol that breaks this left-to-right barrier. We evaluated this new protocol in a machine translation environment, obtaining large reductions of the human effort. Finally, since this interactive framework is of general application to any translation problem, we applied it¿our new protocol together with one of the classic left-to-right protocols¿to language modernization and spelling normalization. As with machine translation, the interactive framework diminished the effort required for correcting the outputs of an automatic system. / The research leading to this thesis has been partially funded by Ministerio de Economía y Competitividad (MINECO) under projects SmartWays (grant agreement RTC-2014-1466-4), CoMUN-HaT (grant agreement TIN2015-70924-C2-1-R) and MISMISFAKEnHATE (grant agreement PGC2018-096212-B-C31); Generalitat Valenciana under projects ALMAMATER (grant agreement PROMETEOII/2014/030) and DeepPattern (grant agreement PROMETEO/2019/121); the European Union through Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) from Comunitat Valenciana (2014–2020) under project Sistemas de frabricación inteligentes para la indústria 4.0 (grant agreement ID-IFEDER/2018/025); and the PRHLT research center under the research line Machine Learning Applications. / Domingo Ballester, M. (2022). Some Contributions to Interactive Machine Translation and to the Applications of Machine Translation for Historical Documents [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/181231
|
Page generated in 0.1259 seconds