1 |
The Neural Computations of Spatial Memory from Single Cells to NetworksHedrick, Kathryn 06 September 2012 (has links)
Studies of spatial memory provide valuable insight into more general mnemonic functions, for by observing the activity of cells such as place cells, one can follow a subject’s dynamic representation of a changing environment. I investigate how place cells resolve conflicting neuronal input signals by developing computational models that integrate synaptic inputs on two scales. First, I construct reduced models of morphologically accurate neurons that preserve neuronal structure and the spatial
specificity of inputs. Second, I use a parallel implementation to examine the dynamics among a network of interconnected place cells. Both models elucidate possible roles for the inputs and mechanisms involved in spatial memory.
|
2 |
Affine Abstraction of Nonlinear Systems with Applications to Active Model DiscriminationJanuary 2018 (has links)
abstract: This work considers the design of separating input signals in order to discriminate among a finite number of uncertain nonlinear models. Each nonlinear model corresponds to a system operating mode, unobserved intents of other drivers or robots, or to fault types or attack strategies, etc., and the separating inputs are designed such that the output trajectories of all the nonlinear models are guaranteed to be distinguishable from each other under any realization of uncertainties in the initial condition, model discrepancies or noise. I propose a two-step approach. First, using an optimization-based approach, we over-approximate nonlinear dynamics by uncertain affine models, as abstractions that preserve all its system behaviors such that any discrimination guarantees for the affine abstraction also hold for the original nonlinear system. Then, I propose a novel solution in the form of a mixed-integer linear program (MILP) to the active model discrimination problem for uncertain affine models, which includes the affine abstraction and thus, the nonlinear models. Finally, I demonstrate the effectiveness of our approach for identifying the intention of other vehicles in a highway lane changing scenario. For the abstraction, I explore two approaches. In the first approach, I construct the bounding planes using a Mixed-Integer Nonlinear Problem (MINLP) formulation of the given system with appropriately designed constraints. For the second approach, I solve a linear programming (LP) problem that over-approximates the nonlinear function at only the grid points of a mesh with a given resolution and then accounting for the entire domain via an appropriate correction term. To achieve a desired approximation accuracy, we also iteratively subdivide the domain into subregions. This method applies to nonlinear functions with different degrees of smoothness, including Lipschitz continuous functions, and improves on existing approaches by enabling the use of tighter bounds. Finally, we compare the effectiveness of this approach with the existing optimization-based methods in simulation and illustrate its applicability for estimator design. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2018
|
3 |
Etude sur la modélisation de la couche active et la dissipation thermique dans les électrodes d’une cellule solaire organique / Study of the modeling of the active layer and the thermal dissipation inside the electrodes of an organic solar cellCristoferi, Claudio 28 January 2016 (has links)
Ce travail s'inscrit dans le domaine des cellules solaires organiques et se focalise sur le dimensionnement et design de la cellule. Nous avons cherché à établir la relation entre la forme d'une cellule solaire et sa dissipation thermique dans les électrodes, plus spécifiquement l'électrode inférieure transparente, car les matériaux utilisés pour la réaliser ont souvent une conductivité très faible par rapport à celle des électrodes métalliques. D'autre part nous présentons un modèle actif capable de simuler le comportement de la couche active selon différentes conditions d'éclairage (illumination partielle et défauts localisés) et pour différents régimes de fonctionnement (injection, polarisation). Dans le cadre du projet PHASME en partenariat avec Disasolar et l'INES, on a posé les bases pour le développement d'un logiciel de conception capable de réaliser un module solaire multicolore à partir d'un substrat de forme géométrique quelconque. On a identifié deux types d'algorithme. Une solution A (dite matricielle), pour laquelle on effectue le remplissage de la surface active du module avec des cellules identiques, relie entre elles ces cellules en sous-groupes pour créer le potentiel de fonctionnement souhaité. Une méthode B (dite non-matricielle) consiste à partager la surface du module en sous-modules de surface quelconque adaptée aux zones de couleur. Ces sous-modules sont ensuite découpés en groupement en série cellules du même type (couleur, performance, matériaux de couche active), mais dont la forme s'adapte exactement au remplissage du sous-module. Ces cellules doivent nécessairement avoir la même surface, afin de produire le même courant pour éviter les pertes dans le groupement en série. / This work concerns organic solar cells and it focuses on several aspects of the design of the device that are related to the sizing. The core of this study highlights the relation between the shape of an organic solar cell and the thermal dissipation inside the electrodes. The main contribution to this power loss comes from the transparent back electrode, since its conductivity is typically lower than those of the top electrode. In parallel we developed a non-linear model for the active layer in order to simulate the behavior of the solar cells in several particular illumination cases (such as spotlights, shadows and defects in the active layer) and different working regime. In the framework of PHASME project, a grant in collaboration with Disasolar and CEA-INES, we developed another piece of software closer to the CAD domain which the main function was to create a photovoltaic polychrome module starting from a substrate with given shape and size. We found two strategies. One consists in filling by the same solar cell shape and size the entire substrate and then in finding a suitable grouping in order to have the correct working point outside the device (matrix approach). The other one (non-matrix approach) consists in adapting the shape of the device to a given colored region, each individual cell keeping the same surface extension, which allows them to be connected in series since they all generate the same amount of current.
|
Page generated in 0.0662 seconds