• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fuzzy logic based robust control of queue management and optimal treatment of traffic over TCP/IP networks

Li, Zhi January 2005 (has links)
Improving network performance in terms of efficiency, fairness in the bandwidth, and system stability has been a research issue for decades. Current Internet traffic control maintains sophistication in end TCPs but simplicity in routers. In each router, incoming packets queue up in a buffer for transmission until the buffer is full, and then the packets are dropped. This router queue management strategy is referred to as Drop Tail. End TCPs eventually detect packet losses and slow down their sending rates to ease congestion in the network. This way, the aggregate sending rate converges to the network capacity. In the past, Drop Tail has been adopted in most routers in the Internet due to its simplicity of implementation and practicability with light traffic loads. However Drop Tail, with heavy-loaded traffic, causes not only high loss rate and low network throughput, but also long packet delay and lengthy congestion conditions. To address these problems, active queue management (AQM) has been proposed with the idea of proactively and selectively dropping packets before an output buffer is full. The essence of AQM is to drop packets in such a way that the congestion avoidance strategy of TCP works most effectively. Significant efforts in developing AQM have been made since random early detection (RED), the first prominent AQM other than Drop Tail, was introduced in 1993. Although various AQMs also tend to improve fairness in bandwidth among flows, the vulnerability of short-lived flows persists due to the conservative nature of TCP. It has been revealed that short-lived flows take up traffic with a relatively small percentage of bytes but in a large number of flows. From the user’s point of view, there is an expectation of timely delivery of short-lived flows. Our approach is to apply artificial intelligence technologies, particularly fuzzy logic (FL), to address these two issues: an effective AQM scheme, and preferential treatment for short-lived flows. Inspired by the success of FL in the robust control of nonlinear complex systems, our hypothesis is that the Internet is one of the most complex systems and FL can be applied to it. First of all, state of the art AQM schemes outperform Drop Tail, but their performance is not consistent under different network scenarios. Research reveals that this inconsistency is due to the selection of congestion indicators. Most existing AQM schemes are reliant on queue length, input rate, and extreme events occurring in the routers, such as a full queue and an empty queue. This drawback might be overcome by introducing an indicator which takes account of not only input traffic but also queue occupancy for early congestion notification. The congestion indicator chosen in this research is traffic load factor. Traffic load factor is in fact dimensionless and thus independent of link capacity, and also it is easy to use in more complex networks where different traffic classes coexist. The traffic load indicator is a descriptive measure of the complex communication network, and is well suited for use in FL control theory. Based on the traffic load indicator, AQM using FL – or FLAQM – is explored and two FLAQM algorithms are proposed. Secondly, a mice and elephants (ME) strategy is proposed for addressing the problem of the vulnerability of short-lived flows. The idea behind ME is to treat short-lived flows preferably over bulk flows. ME’s operational location is chosen at user premise gateways, where surplus processing resources are available compared to other places. By giving absolute priority to short-lived flows, both short and long-lived flows can benefit. One problem with ME is starvation of elephants or long-lived flows. This issue is addressed by dynamically adjusting the threshold distinguishing between mice and elephants with the guarantee that minimum capacity is maintained for elephants. The method used to dynamically adjust the threshold is to apply FL. FLAQM is deployed to control the elephant queue with consideration of capacity usage of mice packets. In addition, flow states in a ME router are periodically updated to maintain the data storage. The application of the traffic load factor for early congestion notification and the ME strategy have been evaluated via extensive experimental simulations with a range of traffic load conditions. The results show that the proposed two FLAQM algorithms outperform some well-known AQM schemes in all the investigated network circumstances in terms of both user-centric measures and network-centric measures. The ME strategy, with the use of FLAQM to control long-lived flow queues, improves not only the performance of short-lived flows but also the overall performance of the network without disadvantaging long-lived flows.
2

Some active queue management methods for controlling packet queueing delay : design and performance evaluation of some new versions of active queue management schemes for controlling packet queueing delay in a buffer to satisfy quality of service requirements for real-time multimedia applications

Mohamed, Mahmud H. Etbega January 2009 (has links)
Traditionally the Internet is used for the following applications: FTP, e-mail and Web traffic. However in the recent years the Internet is increasingly supporting emerging applications such as IP telephony, video conferencing and online games. These new applications have different requirements in terms of throughput and delay than traditional applications. For example, interactive multimedia applications, unlike traditional applications, have more strict delay constraints and less strict loss constraints. Unfortunately, the current Internet offers only a best-effort service to all applications without any consideration to the applications specific requirements. In this thesis three existing Active Queue Management (AQM) mechanisms are modified by incorporating into these a control function to condition routers for better Quality of Service (QoS). Specifically, delay is considered as the key QoS metric as it is the most important metric for real-time multimedia applications. The first modified mechanism is Drop Tail (DT), which is a simple mechanism in comparison with most AQM schemes. A dynamic threshold has been added to DT in order to maintain packet queueing delay at a specified value. The modified mechanism is referred to as Adaptive Drop Tail (ADT). The second mechanism considered is Early Random Drop (ERD) and, iii in a similar way to ADT, a dynamic threshold has been used to keep the delay at a required value, the main difference being that packets are now dropped probabilistically before the queue reaches full capacity. This mechanism is referred to as Adaptive Early Random Drop (AERD). The final mechanism considered is motivated by the well known Random Early Detection AQM mechanism and is effectively a multi-threshold version of AERD in which packets are dropped with a linear function between the two thresholds and the second threshold is moveable in order to change the slope of the dropping function. This mechanism is called Multi Threshold Adaptive Early Random Drop (MTAERD) and is used in a similar way to the other mechanisms to maintain delay around a specified level. The main focus with all the mechanisms is on queueing delay, which is a significant component of end-to-end delay, and also on reducing the jitter (delay variation) A control algorithm is developed using an analytical model that specifies the delay as a function of the queue threshold position and this function has been used in a simulation to adjust the threshold to an effective value to maintain the delay around a specified value as the packet arrival rate changes over time. iv A two state Markov Modulated Poisson Process is used as the arrival process to each of the three systems to introduce burstiness and correlation of the packet inter-arrival times and to present sudden changes in the arrival process as might be encountered when TCP is used as the transport protocol and step changes the size of its congestion window. In the investigations it is assumed the traffic source is a mixture of TCP and UDP traffic and that the mechanisms conserved apply to the TCP based data. It is also assumed that this consists of the majority proportion of the total traffic so that the control mechanisms have a significant effect on controlling the overall delay. The three mechanisms are evaluated using a Java framework and results are presented showing the amount of improvement in QoS that can be achieved by the mechanisms over their non-adaptive counterparts. The mechanisms are also compared with each other and conclusions drawn.
3

Some Active Queue Management Methods for Controlling Packet Queueing Delay. Design and Performance Evaluation of Some New Versions of Active Queue Management Schemes for Controlling Packet Queueing Delay in a Buffer to Satisfy Quality of Service Requirements for Real-time Multimedia Applications.

Mohamed, Mahmud H. Etbega January 2009 (has links)
Traditionally the Internet is used for the following applications: FTP, e-mail and Web traffic. However in the recent years the Internet is increasingly supporting emerging applications such as IP telephony, video conferencing and online games. These new applications have different requirements in terms of throughput and delay than traditional applications. For example, interactive multimedia applications, unlike traditional applications, have more strict delay constraints and less strict loss constraints. Unfortunately, the current Internet offers only a best-effort service to all applications without any consideration to the applications specific requirements. In this thesis three existing Active Queue Management (AQM) mechanisms are modified by incorporating into these a control function to condition routers for better Quality of Service (QoS). Specifically, delay is considered as the key QoS metric as it is the most important metric for real-time multimedia applications. The first modified mechanism is Drop Tail (DT), which is a simple mechanism in comparison with most AQM schemes. A dynamic threshold has been added to DT in order to maintain packet queueing delay at a specified value. The modified mechanism is referred to as Adaptive Drop Tail (ADT). The second mechanism considered is Early Random Drop (ERD) and, iii in a similar way to ADT, a dynamic threshold has been used to keep the delay at a required value, the main difference being that packets are now dropped probabilistically before the queue reaches full capacity. This mechanism is referred to as Adaptive Early Random Drop (AERD). The final mechanism considered is motivated by the well known Random Early Detection AQM mechanism and is effectively a multi-threshold version of AERD in which packets are dropped with a linear function between the two thresholds and the second threshold is moveable in order to change the slope of the dropping function. This mechanism is called Multi Threshold Adaptive Early Random Drop (MTAERD) and is used in a similar way to the other mechanisms to maintain delay around a specified level. The main focus with all the mechanisms is on queueing delay, which is a significant component of end-to-end delay, and also on reducing the jitter (delay variation) A control algorithm is developed using an analytical model that specifies the delay as a function of the queue threshold position and this function has been used in a simulation to adjust the threshold to an effective value to maintain the delay around a specified value as the packet arrival rate changes over time. iv A two state Markov Modulated Poisson Process is used as the arrival process to each of the three systems to introduce burstiness and correlation of the packet inter-arrival times and to present sudden changes in the arrival process as might be encountered when TCP is used as the transport protocol and step changes the size of its congestion window. In the investigations it is assumed the traffic source is a mixture of TCP and UDP traffic and that the mechanisms conserved apply to the TCP based data. It is also assumed that this consists of the majority proportion of the total traffic so that the control mechanisms have a significant effect on controlling the overall delay. The three mechanisms are evaluated using a Java framework and results are presented showing the amount of improvement in QoS that can be achieved by the mechanisms over their non-adaptive counterparts. The mechanisms are also compared with each other and conclusions drawn.
4

Performance modelling and analysis of congestion control mechanisms for communication networks with quality of service constraints : an investigation into new methods of controlling congestion and mean delay in communication networks with both short range dependent and long range dependent traffic

Fares, Rasha Hamed Abdel Moaty January 2010 (has links)
Active Queue Management (AQM) schemes are used for ensuring the Quality of Service (QoS) in telecommunication networks. However, they are sensitive to parameter settings and have weaknesses in detecting and controlling congestion under dynamically changing network situations. Another drawback for the AQM algorithms is that they have been applied only on the Markovian models which are considered as Short Range Dependent (SRD) traffic models. However, traffic measurements from communication networks have shown that network traffic can exhibit self-similar as well as Long Range Dependent (LRD) properties. Therefore, it is important to design new algorithms not only to control congestion but also to have the ability to predict the onset of congestion within a network. An aim of this research is to devise some new congestion control methods for communication networks that make use of various traffic characteristics, such as LRD, which has not previously been employed in congestion control methods currently used in the Internet. A queueing model with a number of ON/OFF sources has been used and this incorporates a novel congestion prediction algorithm for AQM. The simulation results have shown that applying the algorithm can provide better performance than an equivalent system without the prediction. Modifying the algorithm by the inclusion of a sliding window mechanism has been shown to further improve the performance in terms of controlling the total number of packets within the system and improving the throughput. Also considered is the important problem of maintaining QoS constraints, such as mean delay, which is crucially important in providing satisfactory transmission of real-time services over multi-service networks like the Internet and which were not originally designed for this purpose. An algorithm has been developed to provide a control strategy that operates on a buffer which incorporates a moveable threshold. The algorithm has been developed to control the mean delay by dynamically adjusting the threshold, which, in turn, controls the effective arrival rate by randomly dropping packets. This work has been carried out using a mixture of computer simulation and analytical modelling. The performance of the new methods that have.
5

Congestion Control for Streaming Media

Chung, Jae Won 18 August 2005 (has links)
"The Internet has assumed the role of the underlying communication network for applications such as file transfer, electronic mail, Web browsing and multimedia streaming. Multimedia streaming, in particular, is growing with the growth in power and connectivity of today's computers. These Internet applications have a variety of network service requirements and traffic characteristics, which presents new challenges to the single best-effort service of today's Internet. TCP, the de facto Internet transport protocol, has been successful in satisfying the needs of traditional Internet applications, but fails to satisfy the increasingly popular delay sensitive multimedia applications. Streaming applications often use UDP without a proper congestion avoidance mechanisms, threatening the well-being of the Internet. This dissertation presents an IP router traffic management mechanism, referred to as Crimson, that can be seamlessly deployed in the current Internet to protect well-behaving traffic from misbehaving traffic and support Quality of Service (QoS) requirements of delay sensitive multimedia applications as well as traditional Internet applications. In addition, as a means to enhance Internet support for multimedia streaming, this dissertation report presents design and evaluation of a TCP-Friendly and streaming-friendly transport protocol called the Multimedia Transport Protocol (MTP). Through a simulation study this report shows the Crimson network efficiently handles network congestion and minimizes queuing delay while providing affordable fairness protection from misbehaving flows over a wide range of traffic conditions. In addition, our results show that MTP offers streaming performance comparable to that provided by UDP, while doing so under a TCP-Friendly rate."
6

Performance modelling and analysis of congestion control mechanisms for communication networks with quality of service constraints. An investigation into new methods of controlling congestion and mean delay in communication networks with both short range dependent and long range dependent traffic.

Fares, Rasha H.A. January 2010 (has links)
Active Queue Management (AQM) schemes are used for ensuring the Quality of Service (QoS) in telecommunication networks. However, they are sensitive to parameter settings and have weaknesses in detecting and controlling congestion under dynamically changing network situations. Another drawback for the AQM algorithms is that they have been applied only on the Markovian models which are considered as Short Range Dependent (SRD) traffic models. However, traffic measurements from communication networks have shown that network traffic can exhibit self-similar as well as Long Range Dependent (LRD) properties. Therefore, it is important to design new algorithms not only to control congestion but also to have the ability to predict the onset of congestion within a network. An aim of this research is to devise some new congestion control methods for communication networks that make use of various traffic characteristics, such as LRD, which has not previously been employed in congestion control methods currently used in the Internet. A queueing model with a number of ON/OFF sources has been used and this incorporates a novel congestion prediction algorithm for AQM. The simulation results have shown that applying the algorithm can provide better performance than an equivalent system without the prediction. Modifying the algorithm by the inclusion of a sliding window mechanism has been shown to further improve the performance in terms of controlling the total number of packets within the system and improving the throughput. Also considered is the important problem of maintaining QoS constraints, such as mean delay, which is crucially important in providing satisfactory transmission of real-time services over multi-service networks like the Internet and which were not originally designed for this purpose. An algorithm has been developed to provide a control strategy that operates on a buffer which incorporates a moveable threshold. The algorithm has been developed to control the mean delay by dynamically adjusting the threshold, which, in turn, controls the effective arrival rate by randomly dropping packets. This work has been carried out using a mixture of computer simulation and analytical modelling. The performance of the new methods that have / Ministry of Higher Education in Egypt and the Egyptian Cultural Centre and Educational Bureau in London
7

Performance modeling of congestion control and resource allocation under heterogeneous network traffic : modeling and analysis of active queue management mechanism in the presence of poisson and bursty traffic arrival processes

Wang, Lan January 2010 (has links)
Along with playing an ever-increasing role in the integration of other communication networks and expanding in application diversities, the current Internet suffers from serious overuse and congestion bottlenecks. Efficient congestion control is fundamental to ensure the Internet reliability, satisfy the specified Quality-of-Service (QoS) constraints and achieve desirable performance in response to varying application scenarios. Active Queue Management (AQM) is a promising scheme to support end-to-end Transmission Control Protocol (TCP) congestion control because it enables the sender to react appropriately to the real network situation. Analytical performance models are powerful tools which can be adopted to investigate optimal setting of AQM parameters. Among the existing research efforts in this field, however, there is a current lack of analytical models that can be viewed as a cost-effective performance evaluation tool for AQM in the presence of heterogeneous traffic, generated by various network applications. This thesis aims to provide a generic and extensible analytical framework for analyzing AQM congestion control for various traffic types, such as non-bursty Poisson and bursty Markov-Modulated Poisson Process (MMPP) traffic. Specifically, the Markov analytical models are developed for AQM congestion control scheme coupled with queue thresholds and then are adopted to derive expressions for important QoS metrics. The main contributions of this thesis are listed as follows: • Study the queueing systems for modeling AQM scheme subject to single-class and multiple-classes Poisson traffic, respectively. Analyze the effects of the varying threshold, mean traffic arrival rate, service rate and buffer capacity on the key performance metrics. • Propose an analytical model for AQM scheme with single class bursty traffic and investigate how burstiness and correlations affect the performance metrics. The analytical results reveal that high burstiness and correlation can result in significant degradation of AQM performance, such as increased queueing delay and packet loss probability, and reduced throughput and utlization. • Develop an analytical model for a single server queueing system with AQM in the presence of heterogeneous traffic and evaluate the aggregate and marginal performance subject to different threshold values, burstiness degree and correlation. • Conduct stochastic analysis of a single-server system with single-queue and multiple-queues, respectively, for AQM scheme in the presence of multiple priority traffic classes scheduled by the Priority Resume (PR) policy. • Carry out the performance comparison of AQM with PR and First-In First-Out (FIFO) scheme and compare the performance of AQM with single PR priority queue and multiple priority queues, respectively.
8

Performance modeling of congestion control and resource allocation under heterogeneous network traffic. Modeling and analysis of active queue management mechanism in the presence of poisson and bursty traffic arrival processes.

Wang, Lan January 2010 (has links)
Along with playing an ever-increasing role in the integration of other communication networks and expanding in application diversities, the current Internet suffers from serious overuse and congestion bottlenecks. Efficient congestion control is fundamental to ensure the Internet reliability, satisfy the specified Quality-of-Service (QoS) constraints and achieve desirable performance in response to varying application scenarios. Active Queue Management (AQM) is a promising scheme to support end-to-end Transmission Control Protocol (TCP) congestion control because it enables the sender to react appropriately to the real network situation. Analytical performance models are powerful tools which can be adopted to investigate optimal setting of AQM parameters. Among the existing research efforts in this field, however, there is a current lack of analytical models that can be viewed as a cost-effective performance evaluation tool for AQM in the presence of heterogeneous traffic, generated by various network applications. This thesis aims to provide a generic and extensible analytical framework for analyzing AQM congestion control for various traffic types, such as non-bursty Poisson and bursty Markov-Modulated Poisson Process (MMPP) traffic. Specifically, the Markov analytical models are developed for AQM congestion control scheme coupled with queue thresholds and then are adopted to derive expressions for important QoS metrics. The main contributions of this thesis are listed as follows: iii ¿ Study the queueing systems for modeling AQM scheme subject to single-class and multiple-classes Poisson traffic, respectively. Analyze the effects of the varying threshold, mean traffic arrival rate, service rate and buffer capacity on the key performance metrics. ¿ Propose an analytical model for AQM scheme with single class bursty traffic and investigate how burstiness and correlations affect the performance metrics. The analytical results reveal that high burstiness and correlation can result in significant degradation of AQM performance, such as increased queueing delay and packet loss probability, and reduced throughput and utlization. ¿ Develop an analytical model for a single server queueing system with AQM in the presence of heterogeneous traffic and evaluate the aggregate and marginal performance subject to different threshold values, burstiness degree and correlation. ¿ Conduct stochastic analysis of a single-server system with single-queue and multiple-queues, respectively, for AQM scheme in the presence of multiple priority traffic classes scheduled by the Priority Resume (PR) policy. ¿ Carry out the performance comparison of AQM with PR and First-In First-Out (FIFO) scheme and compare the performance of AQM with single PR priority queue and multiple priority queues, respectively.
9

Gerenciamento ativo de filas para o protocolo "High Speed Transmission Control Protocol" em redes com produto banda-atraso elevado / Active queue management High Speed Transmission Control Protocol in high bandwidth-delay networks

Santi, Juliana de, 1982- 13 August 2018 (has links)
Orientador: Nelson Luis Saldanha da Fonseca / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-13T10:35:13Z (GMT). No. of bitstreams: 1 Santi_Julianade_M.pdf: 1658984 bytes, checksum: 8a9f078587406a06815484e4fe057f7d (MD5) Previous issue date: 2008 / Resumo: A utilização eficiente da banda passante em redes de alta velocidade e grandes atrasos, denominadas redes com produto banda-atraso elevado (PBA), tornou-se um grande desafio. Isto ocorre devido aos ajustes do protocolo Transmission Control Protocol (TCP). O High Speed TCP (HSTCP), uma variante do TCP para redes com PBA elevado, emprega ajustes mais agressivos permitindo, assim, que a utilização da banda seja escalável. As políticas de Gerenciamento Ativo de Filas ou Active Queue Management (AQM), monitoram o nível de ocupação das filas nos roteadores e notificam o congestionamento incipiente aos emissores TCP através do descarte/marcação de pacotes. O sistema de controle de congestionamento apresenta natureza de retroalimentação, na qual a taxa de transmissão dos nós fontes é ajustada em função do nível de ocupação da fila. Os controladores AQM determinam a probabilidade de descarte/marcação para maximizar a vazão e minimizar perdas, garantindo, assim, a estabilidade do tamanho da fila independentemente das variações das condições da rede. Neste trabalho, define-se a política de gerenciamento ativo de filas HSTCP-H2 para redes com PBA elevado que utilizam o protocolo HSTCP. Para a derivação de HSTCP­H2: são utilizadas técnicas de Teoria de Controle Ótimo. A principal característica desta política é considerar o atraso do sistema o que permite melhor utilização dos recursos disponíveis. A estabilidade e os objetivos de desempenho do sistema são expressos e solu­cionados através de Desigualdades Matriciais Lineares, permitindo que os parâmetros do controlador possam ser calculados através da solução de um problema convexo simples. Diferentes controladores foram derivados considerando-se diferentes objetivos de de­sempenho, os quais consideram as características de redes com produto banda-atraso elevado. Através de simulações, os desempenhos dos controladores derivados são avalia­dos e a eficácia do controlador que apresentou o melhor desempenho foi comparado com o desempenho da política de AQM RED. São considerados cenários com enlace gargalo único e com múltiplos gargalos. / Abstract: The efficient utilization of bandwidth in high speed and large delay networks, called high bandwidth-delay product networks (BDP), has become a major challenge. This is due to adjustments of the Transmission Control Protocol (TCP). The High Speed TCP HSTCP): a TCP variant to high BDP networks, employs more aggressive adjustments, allowing scalable bandwidth utilization. The Active Queue Management (AQM) policies monitor the queue length in the routers and notify incipient congestion to TCP source by marking or dropping packets. The congestion control system presents intrinsic feedback nature, where the transmission rates of the sources are adjusted according to the level of congestion inferred by the queue occupancy. The AQM controllers determine the dropping marking probability values to maximize throughput and minimize losses, giving guarantees to stabilize the queue length independent of network conditions. In this work, it is defined HSTCP-H2, an active queue management policy to high BDP networks, which adopt the HSTCP as their transport protocol. Optimal control theory is used to conceive HSTCP-H2. The novelty of the proposed approach lies in consider the delay of the system which allows better use of available resources. Furthermore, in the proposed approach, stability and performance objectives are completely expressed as Linear Matrix Inequalities (LMIs), thus requiring the solution of a single convex problem for the computation of the controller parameters. Different controllers are derived considering different design goals, which take into ac­count the characteristics of the high bandwidth-delay product networks. The performance produced by different optimal controllers was investigated. The efficacy of the control­ler with the best performance was then compared to the performance of RED policy. The simulation experiments were carried out using topologies with single and multiple bottleneck. / Mestrado / Redes de Computadores / Mestre em Ciência da Computação

Page generated in 0.1128 seconds