Spelling suggestions: "subject:"actomyosine"" "subject:"actomyosines""
1 |
Rôle des microtubules et de l'acto-myosine dans la migration des interneurones corticauxBaudoin, Jean-Pierre 27 March 2008 (has links) (PDF)
Pendant le développement embryonnaire, les cellules de l'Eminence Ganglionnaire Médiane (EGM) gagnent le cortex cérébral et s'y dispersent largement par migration tangentielle, puis s'y différencient en interneurones. Mon travail de thèse a consisté à analyser le comportement migratoire des cellules d'EGM dans un modèle in-vitro. Ces cellules présentent un cycle de migration en deux phases que j'ai contribué à caractériser. Premièrement, un renflement contenant le centrosome et l'appareil de Golgi se forme à partir du compartiment somatique et migre dans le neurite de tête, jusqu'à 30μm du noyau resté à l'arrière. La deuxième phase du cycle correspond à la translocation rapide du noyau vers le centrosome et l'appareil de Golgi. Les translocations nucléaires sont bloquées par la Blebbistatine, un inhibiteur spécifique de la myosine II non-musculaire, suggérant que les contractions du système d'acto-myosine jouent un rôle déterminant dans les mouvements du noyau vers le centrosome. J'ai examiné le rôle des microtubules dans le contrôle de la forme et de la motilité des cellules d'EGM par des études pharmacologiques. J'ai utilisé du nocodazole, drogue qui altère l'instabilité dynamique des microtubules à faible dose ou les déstabilise à forte dose. De faibles doses (100nM) de nocodazole n'affectent pas ou peu la motilité des cellules d'EGM en migration, mais simplifient leur arborisation neuritique et déstabilisent leur polarité ; de fortes doses (1μM) de nocodazole induisent un comportement migratoire dit multipolaire, avec une vitesse de migration diminuée de moitié. Ces résultats suggèrent que la stabilité des microtubules est cruciale pour maintenir la polarité et contrôler la directionnalité des cellules d'EGM en migration, alors que des mécanismes complémentaires contrôlent leur motilité. J'ai ensuite caractérisé le rôle de la myosine II et d'une de ses voies activatrices, la voie Rho. Le traitement des cellules d'EGM en migration par des doses modérées de Blebbistatine (20μM) ou par un inhibiteur spécifique de la Rho-kinase ROCK (Y27632), ont montré que l'activation de la myosine II non seulement contrôle l'amplitude et la fréquence des translocations nucléaires, mais aussi le positionnement du centrosome à l'avant. L'étude d'un mutant hypomorphe pour l'isoforme B de la myosine II, menée avec Nathalie Nériec, a confirmé ce rôle de la myosine dans le contrôle des mouvements du noyau et du centrosome. Les mouvements relatifs du noyau et du centrosome dans les cellules d'EGM en migration suggèrent une organisation particulière du réseau de microtubules. J'ai étudié cette organisation par tomographie électronique. J'ai mis en évidence deux réseaux de microtubules dans les cellules d'EGM: 1) un réseau de microtubules ancrés aux centrioles et dirigés majoritairement vers l'avant de la cellule 2) des microtubules non-centrosomaux. Le noyau est entouré par des microtubules non-centrosomaux. A l'avant du noyau, des microtubules peuvent former un rail sur lequel glisse la membrane nucléaire. Pendant le cycle de migration des cellules d'EGM, les centrioles présentent des changements de localisation subcellulaire associés à des transformations ultrastructurales inattendues. Le centriole père est capable de s'associer à la membrane plasmique où il peut former un cil. Mes études ultrastructurales montrent que l'ancrage membranaire du corps basal et la formation du cil ont lieu pendant la phase stationnaire du noyau, à distance de celui-ci dans le renflement. Ainsi, dans les futurs interneurones corticaux, l'adressage cyclique d'un centriole/corps basal à la membrane plasmique est corrélé au cycle de migration. Ce processus inédit contrôle probablement la migration des interneurones par un mécanisme qui reste à identifier. Ce comportement caractéristique des centrioles et la régulation dynamique de l'ancrage des microtubules au centrosome pourraient en outre expliquer l'organisation particulière des microtubules dans ces neurones.
|
2 |
Lien entre signalisation JAK/STAT, remodelage cellulaire et extrusion d’un groupe de cellules épithéliales dans l’ovaire de drosophile / Link Between JAK/STAT signaling, cell remodeling and extrusion from the follicular epithelium in the Drosophila ovaryTorres Espinosa, Alba Yurani 16 December 2016 (has links)
Les cellules épithéliales changent en forme et en nombre au cours de divers processus morphogénétiques pendant le développement. La dynamique du réseau d’acto-myosine en interaction directe avec les jonctions adhérentes (JA) est à la base de ces mouvements cellulaires. Cependant, les mécanismes qui régulent cette dynamique cellulaire et moléculaire dans l’espace et le temps sont peu étudiés. Durant les stades précoces de l’ovogenèse chez la drosophile, le follicule ovarien est une sphère composée d'un cyste germinal recouvert d'un épithélium folliculaire monocouche d'origine somatique. Aux pôles de cette structure, un groupe de cellules, les Cellules Polaires (CP), sont produites en excès (3-6 cellules) au début de l'ovogenèse, et ensuite subissent une mort cellulaire programmée apoptotique entre les stades 2 et 4 de l’ovogenèse. De cette façon, à partir du stade 5 tous les pôles contiendront 2CP. Les CP sont l’unique source de sécrétion du ligand de la voie de signalisation JAK/STAT, Unpaired. Notre équipe a démontré que l’activation autonome et non-autonome cellulaire de la voie JAK/STAT est nécessaire pour l'apoptose développementale des CP. Grâce à l’utilisation de l’imagerie confocale en temps réel ainsi que sur des tissus fixés, j’ai établi une séquence d’évènements stéréotypés qui a lieu pendant l’élimination des CP surnuméraires. Trois phases ont été identifiées dans cette séquence: 1) une phase lente de remodelage cellulaire dépendante de la voie de signalisation JAK/STAT au cours de laquelle chaque CP à être éliminée est totalement enveloppée par les CP voisines (plus de 7h) ; 2) une phase d’activation de la cascade canonique de l’apoptose, commençant lorsque la PC est entièrement enveloppée, suivie d’un détachement puis d’une extrusion latérale des corps apoptotiques (1h) ; et 3) une phase de phagocytose des corps apoptotiques par les Cellules Folliculaires (CF) voisines (plus de 5h). Ensuite, en utilisant une approche gènes candidats, j’ai effectué des perturbations génétiques de la Myosine, de la Cadhérine et de différents régulateurs de l’Actine dans les CF et/ou dans les CP, ainsi que des analyses de la dynamique de certaines de ces molécules. Ces expériences m’ont permis de déterminer que la fonction de ces molécules est nécessaire dans les CF pour le processus d’élimination des CP surnuméraires. Finalement un lien entre la signalisation JAK/STAT et la dynamique de la Myosine a été mis en évidence. / Epithelial cells change in shape and number over the various morphogenetic processes occurring during development. The dynamics of the acto-myosin network in direct interaction with adherens junctions is the basis of these cell movements. However, the mechanisms regulating these cellular and molecular dynamics in space and time have not been much studied. During the early stages of oogenesis in Drosophila, the ovarian follicle is a sphere composed of a germline cyst surrounded by a mono-layered follicular epithelium of somatic origin. At the poles of this structure, a group of cells, the Polar Cells (PCs), which are produced in excess (3-6 cells) during early oogoenesis, undergo apoptotic programmed cell death between stages 2-4 of oogenesis, thus that as of stage 5 all poles contain exactly 2 PCs. PCs are the only source of the secreted ligand of the JAK/STAT signaling pathway, Unpaired. Our group has demonstrated that cell autonomous and cell non-autonomous activation of the JAK/STAT pathway is necessary for this developmental apoptosis. Through the use of confocal imaging in real time and on fixed tissues, I established a stereotyped sequence of events that occurs during the elimination of supernumerary PCs. Three phases were identified in this sequence: 1) a slow phase of cellular remodeling dependent on JAK/STAT signaling in which the PC to be eliminated is completely enveloped by its PC neighbors (more than 7 hours); 2) activation of the canonical apoptosis cascade, occurring when the PC is fully enveloped, followed by cell detachment and lateral extrusion of apoptotic corpses (1h); and 3) phagocytosis of apoptotic corpses by the surrounding Follicular Cells (FCs) (over 5 hours). Then, using a candidate gene approach, I conducted genetic perturbation of Myosin, Cadherin and actin regulators in the FCs and/or PCs, and the analysis of the dynamics of some of these molecules. These experiences allowed me to determine that the function of these molecules is required in FCs for the process of elimination of supernumerary PCs. Finally, evidence obtained suggests a link between JAK/STAT signaling and Myosin dynamics.
|
3 |
Relation entre forme, tension et adhésion au cours de l'étalement d'une cellule animaleFouchard, Jonathan 23 November 2012 (has links) (PDF)
Chaque cellule d'un animal possède le même génome. Pourtant, ces cellules peuvent avoir des formes et des phénotypes très différents. Or, il a été démontré que l'environnement mécanique peut influencer la forme et même le phénotype cellulaire. On peut donc se demander comment une cellule acquiert une forme, et quelle place joue l'environnement mécanique dans ce processus. Dans cette thèse, nous avons étudié l'étalement précoce de fibroblastes, événement au cours duquel ces cellules passent d'une forme sphérique, où aucune tension n'est transmise au substrat, à une forme étalée, où les cellules compriment le substrat en transemttant leur tension interne à travers des agrégats de protéines que l'on nomme complexes d'adhésion. Afin de déterminer comment la formation de ces complexes corrèle avec la tension tranmise au substrat pendant l'étalement, nous avons mis au point un dispositif capable de mesurer les forces de traction cellulaire en géométrie uniaxiale et d'imager la réorganisation des complexes d'adhésion. Ainsi, nous avons pu montrer que lorsque l'étalement est rapide, la force est nulle et aucun complexe d'adhésion n'est formé. Puis la force commence à croître suivie des adhésions, tandis que l'étalement se fait plus lent. La transition entre ces deux phases semble gouvernée par un changement de forme du corps cellulaire lorsque l'angle qu'il forme avec le substrat dépasse 90°. Nous avons ensuite cherché à savoir comment l'environnement mécanique des cellules pouvait affecter ce scénario en faisant varier la raideur de notre senseur de force, puis en comparant la forme du contact adhésif lorsque la cellule s'étale sur une plaque et entre deux plaques.
|
Page generated in 0.0484 seconds