• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 291
  • 71
  • 55
  • 23
  • 12
  • 7
  • 6
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 585
  • 165
  • 122
  • 99
  • 75
  • 72
  • 71
  • 61
  • 57
  • 49
  • 45
  • 44
  • 42
  • 37
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Leakage Detection in Hydraulic Actuators based on Wavelet Transform

Yazdanpanah Goharrizi, Amin 15 April 2011 (has links)
Hydraulic systems are complex dynamical systems whose performance can be degraded by certain faults, specifically internal or external leakage. The objective of this research is to develop an appropriate signal processing approach for detection and isolation of these faults. By analyzing the dynamics of the hydraulic actuator, an internal leakage is shown to increase the damping characteristic of the system and change the transient response of the pressure signals. An external leakage, on the other hand, drops the pressure signals without having a significant effect on transient responses. Offline detection of internal leakage in hydraulic actuators is first examined by using fast Fourier, wavelet and Hilbert-Huang transforms. The original pressure signal is decomposed using these transform methods and the frequency component which is sensitive to the internal leakage is identified. The root mean square of the processed pressure signal is used and a comparison of the three transforms is made to assess their ability to detect internal leakage fault, through extensive validation tests. The wavelet transform method is shown to be more suitable for internal leakage detection compared to the other two methods. The wavelet based approach is then extended to an online detection method of internal leakage fault. The online approach considers the more realistic case of an actuator that is driven in a closed-loop mode to track pseudorandom position reference inputs against a load emulated by a spring. Furthermore, the method is shown to remain effective even with control systems which are tolerant to leakage faults. Next, the application of wavelet transform to detect external leakage fault using both offline and online applications in hydraulic actuators is described. The method also examines the isolation of this fault from actuator internal leakage in a multiple-fault environment. The results show that wavelet transform is a fast and easily-implementable method for leakage detection in hydraulic actuators without any need to explicitly incorporate the model of actuator or leakage. Internal leakages as low as 0.124 lit/min, are shown to be detectable, for 80% of the times using structured input signal. For online application, internal leakages in the range of 0.2-0.25 lit/min can be identified. External leakages as low as 0.3 lit/min can be detected in all offline and online applications. Other methods such as observer based and Kalman filter methods, which require the model of the actuator or leakage fault, cannot report leakage detection of magnitudes as low as that reported in this work. The low leak rate detection and not requiring a model of the actuator or leakage make this method very attractive for industrial implementation.
122

A biomorphic integrated-circuit implementation of muscular contraction

Hudson, Tina Ann 08 1900 (has links)
No description available.
123

Finite element torque modeling and backstepping control of a spherical motor

Sosseh, Raye Abdoulie 12 1900 (has links)
No description available.
124

Constitutive behavior and reliability of actuator materials

Davis, Brandon Witt 08 1900 (has links)
No description available.
125

Modeling of digital clay for evaluation of coordinated control

Askins, Stephen Alexander 08 1900 (has links)
No description available.
126

Leakage Detection in Hydraulic Actuators based on Wavelet Transform

Yazdanpanah Goharrizi, Amin 15 April 2011 (has links)
Hydraulic systems are complex dynamical systems whose performance can be degraded by certain faults, specifically internal or external leakage. The objective of this research is to develop an appropriate signal processing approach for detection and isolation of these faults. By analyzing the dynamics of the hydraulic actuator, an internal leakage is shown to increase the damping characteristic of the system and change the transient response of the pressure signals. An external leakage, on the other hand, drops the pressure signals without having a significant effect on transient responses. Offline detection of internal leakage in hydraulic actuators is first examined by using fast Fourier, wavelet and Hilbert-Huang transforms. The original pressure signal is decomposed using these transform methods and the frequency component which is sensitive to the internal leakage is identified. The root mean square of the processed pressure signal is used and a comparison of the three transforms is made to assess their ability to detect internal leakage fault, through extensive validation tests. The wavelet transform method is shown to be more suitable for internal leakage detection compared to the other two methods. The wavelet based approach is then extended to an online detection method of internal leakage fault. The online approach considers the more realistic case of an actuator that is driven in a closed-loop mode to track pseudorandom position reference inputs against a load emulated by a spring. Furthermore, the method is shown to remain effective even with control systems which are tolerant to leakage faults. Next, the application of wavelet transform to detect external leakage fault using both offline and online applications in hydraulic actuators is described. The method also examines the isolation of this fault from actuator internal leakage in a multiple-fault environment. The results show that wavelet transform is a fast and easily-implementable method for leakage detection in hydraulic actuators without any need to explicitly incorporate the model of actuator or leakage. Internal leakages as low as 0.124 lit/min, are shown to be detectable, for 80% of the times using structured input signal. For online application, internal leakages in the range of 0.2-0.25 lit/min can be identified. External leakages as low as 0.3 lit/min can be detected in all offline and online applications. Other methods such as observer based and Kalman filter methods, which require the model of the actuator or leakage fault, cannot report leakage detection of magnitudes as low as that reported in this work. The low leak rate detection and not requiring a model of the actuator or leakage make this method very attractive for industrial implementation.
127

Modeling and Control of a Magnetic Drug Delivery System

Afshar, Sepideh January 2012 (has links)
Therapeutic operation risk has been reduced by the use of micro-robots, allowing highly invasive surgery to be replaced by low invasive surgery (LIS), which provides an effective tool even in previously inaccessible parts of the human body. LIS techniques help delivering drugs effectively via micro-carriers. The micro-carriers are divided into two groups: tethered devices, which are supported by internally supplied propulsion mechanism, and untethered devices. Remote actuation is the critical issue in micro-device navigation, especially through blood vessels. To achieve remote control within the cardiovascular system, magnetic propulsion offers an advantage over other proposed actuation methods. In the literature, most research has focused on micro-device structural design, while there is a lack of research into design and analysis of combined structure and control. As the main part, integrating the principle of electromagnetic induced force by feedback control design will lead to the desired automatic movement. An actuator configuration should thus first be designed to initiate the desired force. The design is basically defining the type and placement of a set of coils to achieve an operational goal. In this project, the magnetic actuation is initiated by a combination of four electromagnets and two sets of uniform coils. Preliminary studies on 2D navigation of a ferromagnetic particle are used to show the effect of actuator structure on controller performance. Accordingly, the performance of the four electromagnets combination is compared to the proposed augmented structure with uniform coils. The simulation results show the improved efficiency of the augmented structure. In more general cases, the arrangement and number of electromagnets are unknown and should be defined. An optimization method is suggested to find these variables when the working space is maximized. Finally, the problem of robust output regulation of the electromagnetic system driven by a linear exosystem, is also addressed in this project. The exosystem is assumed to be neutrally stable with unknown frequencies. The parallel connection of two controllers, a robust stabilizer and an internal model-based controller, is presented to eliminate the output error. In the latter one, an adaptation is used to tune the internal model frequencies such that a steady-state control is produced to maintain the output-zeroing condition. The robust regulation with a local domain of convergence is achieved for a special class of decomposable MIMO nonlinear minimum-phase system. The simulation results show the effectiveness and robustness of this method for the electromagnetic system when two different paths are considered.
128

Development, characterization, and application of Ni₁₉.₅Ti₅₀.₅Pd₂₅Pt₅ high-temperature shape memory alloy helical actuators

Stebner, Aaron P. January 2007 (has links)
Thesis (M.S.)--University of Akron, Dept. of Mechanical Engineering, 2007. / "December, 2007." Title from electronic thesis title page (viewed 02/22/2008) Advisor, D. Dane Quinn; Co-Advisor, Graham Kelly; Department Chair, Celal Batur; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
129

The development of a hydrodynamic model for the segmented ionic polymer metal composite (IPMC) for underwater applications and the potential use of IPMCs for energy harvesting

Dogruer, Deniz. January 2006 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2006. / "December, 2006." Includes bibliographical references (leaves 96-100). Online version available on the World Wide Web.
130

Piezoelectric actuator design optimisation for shape control of smart composite plate structures /

Nguyen, Van Ky Quan. January 2005 (has links)
Thesis (Ph. D.)--School of Aerospace, Mechanical and Mechatronic Engineering, Graduate School of Engineering, University of Sydney, 2005. / Bibliography: leaves R1-R20.

Page generated in 0.036 seconds